AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors

Eric Rotenberg

Computer Sciences Department University of Wisconsin — Madison http://www.cs.wisc.edu/~ericro/ericro.html ericro@cs.wisc.edu

## High-Performance Microprocessors

- General-purpose computing success
  - Proliferation of high-performance single-chip microprocessors
- Rapid performance growth fueled by two trends
  - Technology advances: circuit speed and density
  - Microarchitecture innovations: exploiting instruction-level parallelism (ILP) in sequential programs
- Both technology and microarchitecture performance trends have implications to *fault tolerance*

#### Technology and Fault Tolerance

- Technology-driven performance improvements
  - GHz clock rates
  - Billion-transistor chips
- High clock rate, dense designs
  - low voltages for fast switching and power management
  - high-performance and "undisciplined" circuit techniques
  - managing clock skew with GHz clocks
  - pushing the technology envelope potentially reduces design tolerances in general
- => Entire chip prone to frequent, arbitrary transient faults

#### Microarchitecture and Fault Tolerance

- Conventional fault-tolerant techniques
  - Specialized techniques (e.g. ECC for memory, RESO for ALUs) do not cover arbitrary logic faults
  - Pervasive self-checking logic is intrusive to design
  - System-level fault tolerance (e.g. redundant processors) too costly for commodity computers
- A microarchitecture-based fault-tolerant approach
  - Microarchitecture performance trends can be easily leveraged for fault-tolerance goals
  - Broad coverage of transient faults
  - Low overhead: performance, area, and design changes

# Talk Outline

- Technology and microarchitecture trends: implications to fault tolerance
- Time redundancy spectrum
- AR-SMT
- Leveraging microarchitecture trends
  - Simultaneous Multithreading (SMT)
  - Speculation concepts
  - Hierarchical processors (e.g. Trace Processors)
- Performance results
- Summary and future work

#### **Time Redundancy Spectrum** Processor Processor **Program-level** Program P Program P' time redundancy Processor dynamic parallel scheduling execution units Program P Instruction re-execution FU FU instr i i' FU FU

Eric Rotenberg



Eric Rotenberg



# **AR-SMT Fault Tolerance**

- Delay Buffer
  - Simple, fast, hardware-only state passing for comparing thread state
  - Ensures time redundancy: the A- and R-stream copies of an instruction execute at different times
  - Buffer length adjusted to cover transient fault *lifetimes*
- Transient fault detection and recovery
  - Fault detected when thread state does not match
  - Error latency related to length of Delay Buffer
  - Committed R-stream state is checkpoint for recovery

## Leveraging Microarchitecture Trends

- Simultaneous Multithreading
- Control Flow and Data Flow Prediction
- Hierarchy and Replication

# SMT

• Simultaneous multithreading

[Tullsen, Eggers, Emer, Levy, Lo, Stamm: ISCA-23]

- Multiple contexts space-share a wide-issue superscalar processor
- Key ideas
  - Performance: better overall utilization of highly parallel uniprocessor
  - Complexity: leverage well-understood superscalar mechanisms to make multiple contexts transparent
- SMT is (most likely) in next-generation product plans



# Trace Processors

- Trace: a long (16 to 32) dynamic sequence of instructions, and the fundamental unit of operation in Trace Processors
- Replicated PEs => inherent, coarse level of *hardware redundancy* 
  - Permanent fault coverage: A-/R-stream traces go to different PEs
  - Simple re-configuration: remove a PE from the resource pool



## **AR-SMT** on a Trace Processor



AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors



#### Eric Rotenberg

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors



# Summary

- Technology-driven performance improvements
  - New fault environment: frequent, arbitrary transient faults
- Leverage microarchitecture performance trends for broadcoverage, low-overhead fault tolerance
  - SMT-based time redundancy
  - Control and data "prediction"
  - Hierarchical processors
- Introducing a second, redundant thread increases execution time by only 10% to 30%

# Other Interesting Perspectives

- D. Siewiorek. "Niche Successes to Ubiquitous Invisibility: Fault-Tolerant Computing Past, Present, and Future", FTCS-25
  - (Quote) Fault-tolerant architectures have not kept pace with the rate of change in commercial systems.
  - Fault tolerance must make unconventional in-roads into commodity processors: leverage the commodity microarchitecture.
- P. Rubinfeld. "Managing Problems at High Speeds", Virtual Roundtable on the Challenges and Trends in Processor Design, *Computer*, Jan. 1998.
  - Implications of very high clock rate, dense designs

# Future Work

- Performance and design studies
  - Isolate individual performance impact of SMT-ness and prediction aspects
  - Debug Buffer size vs. performance: SMT scheduling flexibility
  - Support more threads
  - Design and validate a full AR-SMT fault-tolerant system
- Derive fault models (collaboration?)
- Simulate fault coverage
  - fault injection
  - test different parts of processor: coverage varies?
  - vary duration of transient faults
  - permanent faults and re-configuration