
AR-SMT: A Microarchi tectural
Approach to Faul t Tolerance in

Microprocessors

Eric Rotenberg

Computer Sciences Department
University of Wisconsin — Madison

http://www.cs.wisc.edu/~ericro/ericro.html
ericro@cs.wisc.edu

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
2

Eric Rotenberg

• General-purpose computing success

- Proliferation of high-performance single-chip
microprocessors

• Rapid performance growth fueled by two trends

- Technology advances: circuit speed and density

- Microarchitecture innovations: exploiting instruction-level
parallelism (ILP) in sequential programs

• Both technology and microarchitecture performance trends
have implications to fault tolerance

High-Performance Microprocessors

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
3

Eric Rotenberg

• Technology-driven performance improvements

- GHz clock rates

- Billion-transistor chips

• High clock rate, dense designs

- low voltages for fast switching and power management

- high-performance and “undisciplined” circuit techniques

- managing clock skew with GHz clocks

- pushing the technology envelope potentially reduces
design tolerances in general

=> Entire chip prone to frequent, arbitrary transient faults

Technology and Faul t Tolerance

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
4

Eric Rotenberg

• Conventional fault-tolerant techniques

- Specialized techniques (e.g. ECC for memory, RESO for
ALUs) do not cover arbitrary logic faults

- Pervasive self-checking logic is intrusive to design

- System-level fault tolerance (e.g. redundant processors)
too costly for commodity computers

• A microarchitecture-based fault-tolerant approach

- Microarchitecture performance trends can be easily
leveraged for fault-tolerance goals

- Broad coverage of transient faults

- Low overhead: performance, area, and design changes

Microarchi tecture and Faul t Tolerance

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
5

Eric Rotenberg

✓Technology and microarchitecture trends: implications to
fault tolerance

• Time redundancy spectrum

• AR-SMT

• Leveraging microarchitecture trends

- Simultaneous Multithreading (SMT)

- Speculation concepts

- Hierarchical processors (e.g. Trace Processors)

• Performance results

• Summary and future work

Talk Out l ine

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
6

Eric Rotenberg

Program P’Program P

Processor Processor

FU

FU

FU

FU
i

i’
instr i

Program P

dynamic
scheduling execution units

parallelProcessor

Time Redundancy Spectrum

Program-level
time redundancy

Instruction re-execution

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
7

Eric Rotenberg

Program P’

Program P

Processor

Time Redundancy Spectrum

time redundancy
AR-SMT

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
8

Eric Rotenberg

• “A” => “Active stream”

• “R” => “Redundant stream”

• “SMT” => “Simultaneous MultiThreading”

A-stream

R-stream

R-stream

A-stream

PROCESSOR
fetch commit

DELAY BUFFER

AR-SMT High Level

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
9

Eric Rotenberg

• Delay Buffer

- Simple, fast, hardware-only state passing for comparing
thread state

- Ensures time redundancy: the A- and R-stream copies of
an instruction execute at different times

- Buffer length adjusted to cover transient fault lifetimes

• Transient fault detection and recovery

- Fault detected when thread state does not match

- Error latency related to length of Delay Buffer

- Committed R-stream state is checkpoint for recovery

AR-SMT Faul t Tolerance

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
10

Eric Rotenberg

• Simultaneous Multithreading

• Control Flow and Data Flow Prediction

• Hierarchy and Replication

Leveraging Microarchi tecture Trends

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
11

Eric Rotenberg

• Simultaneous multithreading

[Tullsen,Eggers,Emer,Levy,Lo,Stamm: ISCA-23]

- Multiple contexts space-share a wide-issue superscalar
processor

- Key ideas

• Performance: better overall utilization of highly parallel
uniprocessor

• Complexity: leverage well-understood superscalar
mechanisms to make multiple contexts transparent

• SMT is (most likely) in next-generation product plans

SMT

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
12

Eric Rotenberg

i4
i3
i2
i1

i5

pipeline latency

2
3
4
5
6
7
8
9

1
cycle

(b) base schedule

2
3
4
5
6
7
8
9

1 i1 i2 i3 i4 i5

cycle

(c) with prediction

��

����

����

��

����

����

i1: r1 <= r6-11
i2: r2 <= r1<<2
i3: r3 <= r1+r2

i5: r5 <= 10

(a) program segment

i4: branch i5,r3==0

• Delay Buffer contains perfect “predictions” for R-stream!

• Existing prediction-validation hardware provides fault detection!

Control and Data “Predict ion”

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
13

Eric Rotenberg

Next
Trace
Predict

Global
Registers

Local

Live-in
Value
Predict

Trace
Cache

Maps
Rename
Global

Registers
Predicted

Issue Buffers

Registers

Func
Units

Processing Element 1

Processing Element 2

Processing Element 3

Processing Element 0

S
pe

cu
la

tiv
e

S
ta

te
D

at
a

C
ac

he

• Trace: a long (16 to 32) dynamic sequence of instructions, and the
fundamental unit of operation in Trace Processors

• Replicated PEs => inherent, coarse level of hardware redundancy
- Permanent fault coverage: A-/R-stream traces go to different PEs
- Simple re-configuration: remove a PE from the resource pool

Trace Processors

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
14

Eric Rotenberg

EXECUTE
ISSUE RETIRE

time-shared

PE

PE

PE

PE

D-cache
Disambig. Unit

Reg File

Predictor
Trace

Cache
Trace

DISPATCH

Decode
Rename
Allocate PE

space-shared

from Delay Buffer
Trace "Prediction"

FETCH

A-stream

A-stream

A-stream

R-stream

A-stream

R-stream

State
Commit

Resources
Reclaim

AR-SMT on a Trace Processor

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
15

Eric Rotenberg

1

1.1

1.2

1.3

comp gcc go jpeg li

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e
(s

in
g

le
 t

h
re

ad
 =

 1
)

4 PE
8 PE

Performance Resul ts

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
16

Eric Rotenberg

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

number of PEs used

%
 o

f
al

l c
yc

le
s
A-stream
R-stream

Performance Resul ts

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
17

Eric Rotenberg

• Technology-driven performance improvements

- New fault environment: frequent, arbitrary transient faults

• Leverage microarchitecture performance trends for broad-
coverage, low-overhead fault tolerance

- SMT-based time redundancy

- Control and data “prediction”

- Hierarchical processors

• Introducing a second, redundant thread increases execution
time by only 10% to 30%

Summary

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
18

Eric Rotenberg

• D. Siewiorek. “Niche Successes to Ubiquitous Invisibility:
Fault-Tolerant Computing Past, Present, and Future”,
FTCS-25

- (Quote) Fault-tolerant architectures have not kept pace
with the rate of change in commercial systems.

- Fault tolerance must make unconventional in-roads into
commodity processors: leverage the commodity
microarchitecture.

• P. Rubinfeld. “Managing Problems at High Speeds”, Virtual
Roundtable on the Challenges and Trends in Processor
Design, Computer, Jan. 1998.

- Implications of very high clock rate, dense designs

Other Interest ing Perspect ives

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Slide
19

Eric Rotenberg

• Performance and design studies

- Isolate individual performance impact of SMT-ness and
prediction aspects

- Debug Buffer size vs. performance: SMT scheduling
flexibility

- Support more threads

- Design and validate a full AR-SMT fault-tolerant system

• Derive fault models (collaboration?)

• Simulate fault coverage

- fault injection
- test different parts of processor: coverage varies?
- vary duration of transient faults
- permanent faults and re-configuration

Future Work

