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Abstract 
 

Conventional processor fault tolerance based on 
time/space redundancy is robust but prohibitively 
expensive for commodity processors. This paper 
explores an unconventional approach to designing a 
cost-effective fault-tolerant superscalar processor. The 
idea is to engage a regimen of microarchitecture-level 
fault checks. A few simple microarchitecture-level fault 
checks can detect many arbitrary faults in large units, 
by observing microarchitecture-level behavior and 
anomalies in this behavior. Previously, we separately 
proposed checks for the fetch and decode stages, 
rename stage, and issue stage of a contemporary 
superscalar processor. While each piece hinted at the 
possibility of a complete regimen – for an overall fault-
tolerant superscalar processor – this totality was not 
explored. This paper provides the culmination by 
building a full regimen into a superscalar processor. 
We show for the first time that the regimen-based 
approach provides substantial coverage of an entire 
superscalar processor. Analysis reveals vulnerable 
areas which should be the focus for regimen additions. 

1. Introduction 
Conventional approaches to processor fault 

tolerance use space or time redundancy, providing 
robust fault tolerance but incurring high costs (in terms 
of performance, area, and power). Explicit redundancy 
is suitable for high-end computing systems, but may 
not be viable in commodity systems. These systems 
demand a more cost-effective fault tolerance solution, 
that provides less coverage than explicit duplication but 
substantial coverage nonetheless. 

This paper explores a new, unconventional approach 
to designing a cost-effective fault-tolerant superscalar 
processor. The idea is to engage a regimen of 
microarchitecture-level fault checks. A 
microarchitecture-level fault check indirectly and 
broadly detects low-level transient faults, by observing 
the microarchitecture-level anomalies they cause. 

Thereby, a few simple checks can detect many arbitrary 
faults in large units. 

In prior work, we separately proposed checks for 
covering the fetch and decode stages [1], the rename 
stage, and the issue stage of a contemporary 
superscalar processor [2]. While each piece hinted at 
the possibility of a complete regimen – for an overall 
fault-tolerant superscalar processor – this totality was 
not explored or evaluated. This paper provides the 
culmination by building a full regimen into a 
superscalar processor, and thoroughly evaluating the 
coverage offered by a regimen-based approach through 
extensive fault-injection experiments. 

This paper makes the following key contributions: 
• We describe an overall microarchitecture-level fault 

check regimen. The regimen is a composition of our 
previous separate microarchitecture-level fault 
checks [1,2], key improvements to these checks, 
and some new checks. 

• We develop a high-level fault injection strategy for 
use with cycle-accurate simulators. All pipeline 
stages of a contemporary superscalar processor are 
analyzed to understand how faults are ultimately 
manifested. This analysis is used to enumerate a list 
of faults to inject in the cycle-accurate simulator. 
The enumerated faults achieve high fault modeling 
coverage of the pipeline, without resorting to RTL 
or gate-level fault injection. 

• We demonstrate for the first time that a 
microarchitecture-level fault check regimen can 
provide substantial coverage of an overall 
superscalar processor pipeline. Extensive fault 
injection experiments show that the regimen detects 
83% of non-masked faults, on average. This 
confirmation could only be obtained by assembling 
a full regimen and injecting a broad spectrum of 
fault types throughout the pipeline, whereas our 
precursor work used rather localized and targeted 
fault injection. For example, our holistic study 
exposes cases where faults are detected by checks 
in ways that were not anticipated or intended. 
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• We present detailed breakdowns of fault outcomes 
and fault checks, (i) across all pipestages, (ii) per 
pipestage, and (iii) per fault type within pipestages. 
These results provide insight into which faults are 
chief culprits for which fault outcomes, and which 
fault checks detect them. The results also identify 
remaining vulnerable areas of the regimen, for 
guiding regimen additions. 

2. Fault check regimen 
This section describes the checks that make up the 

fault check regimen used in this paper. 
2.1. Inherent Time Redundancy (ITR) 

Inherent time redundancy (ITR) exploits program 
repetition to detect faults in decode signals [1]. Decode 
signals of instruction traces are combined into 
signatures and stored in an ITR cache. When an 
instruction trace repeats, its signature is re-created and 
checked with the ITR cache for a match. Misses do not 
directly lead to loss in fault detection coverage, 
because faults in instruction traces that miss can be 
detected by future hits to their signatures. In the 
previous study [1], we showed that an ITR cache can 
effectively detect faults in the fetch and decode stages 
of the pipeline. 

In this paper, we make ITR more effective by 
moving the ITR cache to the retirement stage. This 
extends fault coverage to decode signals across all 
pipeline stages, in addition to protecting the fetch and 
decode units. The pipeline is modified such that, when 
certain decode bits are used for the last time and 
discarded, they update a signature which flows with the 
instruction. When instructions drain from the pipeline, 
their signatures are written into the reorder buffer 
(ROB). Finally, at retirement, the ITR cache is 
accessed to compare instruction trace signatures for 
faults. 
2.2. Register Name Authentication (RNA) 

Register Name Authentication (RNA) [2] exploits 
redundancy among renaming structures used in out-of-
order superscalar processors, to detect faults in the 
destination register mappings of instructions. RNA 
includes two checks, the previous mapping check 
(referred to as RNA1) and the writeback state check 
(RNA2). RNA1 is based on the insight that, when an 
instruction’s logical destination register is renamed, the 
previous physical register mapping in the rename map 
table corresponds to the previous producer of that 
logical destination register, and the same previous 
physical register mapping should be in the architectural 
map table when the instruction commits. By comparing 
the previous physical register mapping recorded at the 
register rename stage to the corresponding mapping in 

the architectural map table at the commit stage, RNA1 
can detect faults in several rename structures: the 
rename map table, architectural map table, shadow map 
tables (branch checkpoints), and the previous and 
current mapping fields of the ROB. However, RNA1 
cannot detect faults in which an erroneous mapping 
appears consistent among all the structures. Faults in 
the free list and the destination renaming logic (which 
assigns new mappings from the free list) fall into this 
class. Nor can RNA1 detect faults in instructions’ 
destination register mappings after the dispatch stage, 
as these mappings fall outside the scope of the overall 
renaming logic. 

RNA2 aims to detect such faults using the insight 
that they cause invalid register conflicts between 
instructions. Basically, an erroneously mapped physical 
register might already be in use by another active 
instruction, committed to architectural state, or still 
available in the free list. Asserting the state of a 
physical register at the register writeback stage 
(confirming that it is not already ready and not in the 
free list) exposes conflicts, hence, detects these faults. 
2.3. Timestamp-based Assertion Check (TAC) 

Timestamp-based Assertion Checking (TAC) [2] 
exploits the insight that an instruction should execute 
only after all of its producers have executed. This 
invariant is true even in an out-of-order superscalar 
processor, where instructions that do not depend on 
each other issue in parallel or out-of-order. To confirm 
time-orderliness within a data dependence chain, TAC 
assigns timestamps to instructions when they issue, and 
compares timestamps in the retirement stage to assert 
that instructions issued only after their producers. The 
out-of-order scheduler is comprised of complex 
hardware structures for waking up and selecting ready 
instructions for issuing. Transient faults in these 
structures or any associated logic can cause instructions 
to issue prematurely. TAC detects all of these faults 
with one simple assertion check. 
2.4. Sequential PC Check (SPC) 

With the SPC check [1], the idea is to maintain a 
retirement program counter (PC) and assert that a 
committing instruction’s PC matches the retirement PC. 
The retirement PC is updated as follows. Non-branch 
instructions add their length (which can be recorded at 
decode for variable-length ISAs) to the retirement PC 
and branches update the retirement PC with their 
calculated PC. Comparing a committing instruction’s 
PC with the retirement PC will detect a discontinuity 
between two otherwise sequential instructions. The 
SPC check can detect faults that affect sequential 
control-flow, for example, faults on the PC or a ROB 
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bookkeeping fault that might cause some valid 
instructions in the ROB to be overwritten. 
2.5. Register Consumer Counter (CC) 

Source register mappings originate in the source 
rename logic and the rename map table (of which the 
shadow map tables are an extension), and propagate 
with the instruction after renaming. 

The consumer counter (CC) check – newly 
proposed in this paper – aims to detect faults in source 
mappings after renaming. The CC check detects such 
faults by maintaining a counter per physical register, 
which indicates the number of unissued consumers of 
the physical register, and asserting that the consumer 
counter is non-zero when the register is read. The 
counter is incremented in the rename stage, when 
source mappings are initially determined. In the 
register read stage, it is asserted that the consumer 
counter of a register being read is non-zero, following 
which, the counter is decremented. Squashing a 
consumer, like issuing a consumer, causes its source 
registers’ counters to be decremented as well. 

If a source mapping in the rename map table (or a 
shadow map table) is modified by a transient fault, the 
now faulty source mapping will be detected by RNA1, 
albeit after a consumer of the faulty mapping commits. 
Specifically, when the next producer of the same 
logical register commits, its recorded previous mapping 
will differ from the corresponding mapping in the 
architectural map table. 

Neither the CC check nor RNA1 check can detect 
faults in the source rename logic, however. In this case, 
the wrong counter is incremented and decremented 
consistently (CC) and the previous mapping recorded 
by the next producer is correct (RNA1). Such faults can 
be detected by re-renaming instructions in the 
retirement stage, using the architectural map table, 
which should yield the same source mappings as the 
rename stage unless there was a fault in either the 
source renaming logic or the source re-renaming logic. 
The extra cost of re-renaming is moderate considering 
that it can be embedded in the cost of the TAC check, 
which reads timestamps of logical source registers from 
the architectural map table. We did not include re-
renaming in the regimen, however. It is left for future 
work. 

Finally, note that some source mapping faults are 
ultimately detected by TAC (if the source mapping 
links a consumer to a wrong producer that executes 
before the right producer) or the watchdog timer (if the 
source mapping causes the consumer to never issue). 
2.6. Confident Branch Misprediction (ConfBr) 

Confidently-predicted branches have been shown to 
be useful for detecting transient faults [9,10]. 

Mispredictions among confidently-predicted branches 
are considered symptoms of transient faults. Upon 
detecting the misprediction of a confidently-predicted 
branch, the pipeline is flushed and restarted from the 
instruction at the head of the ROB. The ConfBr check 
detects some faults affecting uncommitted (speculative) 
values that directly or indirectly feed into a branch. 
2.7. BTB Verify (BTBV) 

The BTB Verify (BTBV) check, newly proposed in 
this paper, exploits inherent redundancy between the 
fetch and decode stages. 

The BTB (branch target buffer) in the fetch stage is 
used to identify branches and provide their taken target 
addresses, earlier than the decode stage (for fast next-
PC prediction). If there is a BTB miss, the branch is 
decoded one or a few cycles later in the decode stage, 
providing the same information, only late. 

We leverage the inherent redundancy between the 
branch information generated by a BTB hit and the 
branch information generated a cycle later in the 
decode stage. They should be consistent. If not, there is 
a fault in either the BTB logic or the decode logic. 

3. Evaluating coverage 
3.1. Fault injection strategy 

A particle can flip a bit stored in a latch, flip-flop, or 
SRAM cell, or cause a transient pulse in a net that 
might lead to incorrect outputs from combinational 
logic blocks which in turn may get latched. Directly 
modeling these low-level faults requires a gate-level 
implementation of the processor. Although this method 
is highly accurate, it has several drawbacks. First, a 
gate-level model may not be available early in the 
design. Second, fault simulation at the gate level is very 
time consuming. Compounding this problem is the 
need for long observation windows following injection 
of a fault, to determine if the fault is eventually 
detected by microarchitecture-level checks. Third, 
faults injected at the gate level are often masked at the 
logic level or architectural level [3,4,5]. While inherent 
fault masking should be part of an accurate reliability 
estimate, it is not useful in evaluating the effectiveness 
of a fault-checking regimen. 

Therefore, it is desirable to have a reasonably 
accurate fault injection strategy that can be used with a 
C/C++ cycle-accurate microarchitecture simulator, 
which we refer to as a timing simulator throughout. The 
challenge in using a timing simulator for fault injection 
is ensuring that the modeled faults comprehensively 
cover low level faults. We take a new approach to 
ensure high fault modeling coverage. The idea is to 
characterize the high level effects of low level faults in 
each pipeline stage, and aggregate many low level 
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faults into fewer high level fault manifestations that can 
be modeled in a timing simulator. 

In hierarchical simulation [6], the effects of low 
level faults are propagated to higher levels of 
abstraction using fault dictionaries. Essentially, our 
novel contribution is a fault dictionary for use in a 
timing simulator of a superscalar pipeline, derived from 
a manual and comprehensive analysis of the pipeline. 

Section 3.2 presents fault analysis of a detailed 2-
way superscalar pipeline model. Each pipeline stage is 
thoroughly analyzed to aggregate faults into 
manifestations which can be modeled in a timing 
simulator. The outcome of this exercise is a 
comprehensive list of high level faults in each pipeline 
stage. 
3.2. Fault analysis of a superscalar pipeline 

A typical superscalar processor pipeline is 
comprised of several stages that process instructions in 
parallel, as depicted in Figure 1 (a) and (b). The 
instruction fetch (IF) stage predicts branches and 
fetches instructions from the instruction cache. The 
instruction decode stage (ID) generates decode signals 
for processing the instruction. The rename stage (REN) 
eliminates output and anti-dependencies in the static 
program representation. The dispatch stage (DISP) 
inserts instructions into the reservation stations (i.e., the 
issue queue) and the reorder buffer, and also the 
load/store queues, in the case of memory instructions. 
The issue stage (IS) dynamically schedules instructions 
for execution based on data availability and issue 
bandwidth. After being issued, instructions read source 
values from the register file in the register read stage 
(RR) and begin executing in the execution stage (EX). 
Loads and stores go through the address generation 
(AGEN) stage instead of the EX stage, followed by 
disambiguation (store-load dependence checking), 
store-to-load forwarding, and data cache access (M). 
After execution or data cache access, instructions write 
their results into the register file and bypass them to 
dependent instructions in the writeback stage (WB). 
Instructions are finally retired in original program order 
from the reorder buffer in the retirement stage (RE). 
 

 
   (a) 
 

 
   (b) 
Figure 1. Superscalar processor pipeline for (a) non-
memory and (b) memory instructions. 

For fault analysis, each pipeline stage is examined to 
see how low level faults in that stage would manifest. 
The goal is to aggregate as many faults into as few 
manifestations as possible, without losing fault 
modeling coverage of the pipeline. 

3.2.1. Example: fault analysis of fetch & decode. 
Due to limited space, we only describe fault analysis of 
the fetch and decode stages of the pipeline, as an 
example. For comprehensive analysis of all stages, the 
reader is referred to the corresponding Ph.D. thesis [7]. 

Figure 2 is a detailed illustration of the fetch and 
decode stages of a 2-way superscalar pipeline. There 
are three fetch stages, Fetch0, Fetch1 and Fetch2. In 
Fetch0, the instruction cache unit is accessed using the 
program counter (PC). The instruction cache unit 
(ICU) is comprised of the instruction translation 
lookaside buffer (I-TLB), instruction cache, and 
instruction alignment logic. The outputs of the ICU are 
a maximum of two instructions, the fetch bandwidth of 
the example processor. In some cases, the output could 
be only one or no instructions. To signify the scenario, 
instructions are marked with valid bits (v1 and v2). In 
parallel with accessing the ICU, the PC is also fed to 
the Next PC Prediction Unit for predicting the PC for 
the next cycle. The prediction is based on inputs from a 
branch target buffer (BTB), conditional branch 
predictor, and return address stack (these are not 
explicitly shown in the figure). The predicted next PC 
is fed back as a candidate PC for the next cycle. 

The Fetch1 stage checks misfetches due to wrong 
branch information from the Next PC Prediction Unit. 
Inputs to Fetch1 are the instruction packet from the 
Fetch0 stage, BTB information that was assumed by 
the Next PC Prediction Unit to predict the next PC (in 
the case of a BTB miss, the Next PC Prediction Unit 
assumes that the fetched packet contains no branches), 
and the predicted next PC itself. The fetched packet is 
decoded to extract branch information, which is then 
compared with the BTB information used by the Next 
PC Prediction Unit. On detecting an inconsistency, the 
Fetch0 stage is redirected to the override PC, and 
instructions in the Fetch0 stage are flushed. The Next 
PC Prediction Unit is also updated with correct 
information (not shown in the figure). 

In the Fetch2 stage, the fetched instructions are 
entered into a fetch queue. The fetch queue decouples 
the decode unit from the fetch unit. The FetchQ 
Allocator tracks the number of entries in the fetch 
queue, and if space is available, enters the new 
instructions at the tail of the queue (tail and tail+1). 
The FetchQ Deallocator reads instructions from the 
head of the fetch queue (head and head+1) and 
provides them to the Decode stage. 

In the Decode stage, instructions are fully decoded 
to establish signals that govern the processing of the 
instructions in later pipeline stages. 

In Figure 2, the numbered circles indicate the fault 
manifestations modeled in the fetch and decode stages. 
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Figure 2. Fault analysis of the fetch and decode stages. 

(1) corresponds to the PC. Many faults in the fetch 
unit ultimately manifest as a faulty PC. This includes 
faults in the Next PC Prediction Unit, selection of a 
wrong PC due to faulty signals to the PC mux, and 
faults in the PC register itself. This manifestation is 
modeled in the simulator by flipping a random bit in 
the PC. 

(2) corresponds to the instruction stream returned by 
the ICU. Many faults in the ICU manifest as a wrong 
instruction stream. This includes faults affecting the I-
cache access, instruction alignment, and branch 
location. This manifestation is modeled by arbitrarily 
masking off instructions from the fetched packet. 

(3) corresponds to instruction validity. If valid bits 
are faulty, bad instructions can appear or good 
instructions can disappear from the pipeline. This is 
similar in spirit to (2), but is modeled by applying it to 
only one instruction. 

(4) corresponds to the Override PC inferred by the 
branch pre-decode stage (Fetch1) to confirm BTB 
predictions made in the Fetch0 stage. Faults in the 
branch pre-decode/BTB verification stage manifest as 
an incorrectly inferred Override PC. This includes 
faults that cause false detection of a branch, 
overlooking of a branch, an incorrect branch position in 
the instruction packet, or an incorrect branch target 
address. This manifestation is modeled by flipping a 
random bit in the inferred Override PC. 

(5) corresponds to the fetch queue. Many faults in 
the fetch queue manifest as reading and writing wrong 
entries. This includes faults in allocation and de-
allocation of entries, bookkeeping, and stall signals. 
This manifestation is modeled by flipping a bit in the 
fetch queue head or tail pointers. 

(6) corresponds to decode signals. Many faults in 
the fetch and decode stages manifest as the production 
of wrong decode signals. These include faults in the 
registers holding instructions, the decode logic, and the 
Decode stage’s output registers. These are modeled by 
flipping an arbitrary bit in one of the many decode 
signals, shown in Table 1. 
3.2.2. Fault analysis of all pipeline stages. Similar 
analysis was performed for all pipeline stages [7], and 
the resulting list of fault manifestations is shown in 
Table 1. 

4. Methodology 
The faults identified in Section 3.2 are modeled in a 

timing simulator. The simulator models a 
microarchitecture similar to the MIPS R10000 [8] and 
outlined in Section 3.2. Key parameters of the 
microarchitecture are: 4-way superscalar pipeline with 
64-entry ROB; 64KB 4-way set-associative L1 
instruction and data caches; 1 MB 4-way set-
associative unified L2 cache with 10-cycle hit time and 
100-cycle miss time; 216-entry gshare branch predictor 
with confidence threshold of 64. The ITR cache is 
16KB (1,024 entries) 2-way set-associative. 

A subset of the SPEC2K benchmark suite is used 
for evaluation. For each benchmark, one thousand 
faults are randomly injected. Fault injection involves 
randomly selecting a fault to inject from the list of 
faults. A separate “golden” (fault-free) simulator is run 
in parallel with the faulty timing simulator. When an 
instruction is committed to the architectural state in the 
timing simulator, it is compared with its golden 
counterpart to determine whether or not the 
architectural state is being corrupted. Any fault that 
leads to corruption of architectural state is classified as 
a potential silent data corruption (SDC) fault. Likewise, 
if no corruption of architectural state is observed for a 
set period of time after a fault is injected (the 
observation window), it is classified as a masked fault. 
In this study, an observation window of one million 
cycles is used. A watchdog timer (shown as WDOG in 
the results) is included in the experiments to check for 
deadlocks. 

An injected fault leads to one of many possible 
outcomes, based on the combination of (1) the effect of 
the fault on the application, and (2) whether or not the 
fault is detected by the fault check regimen and how. 
Figure 3 shows the possible fault outcomes as a chart. 
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Table 1. Table of faults for all pipeline stages. 
Pipe Stage Fault Description

Fetch FETCH_PC Flip a random bit in the program counter
Fetch WRONG_INSTR Remove an arbitrary number of fetched instructions
Fetch NEXT_PC Flip a random bit in the override PC from the branch pre-decode/BTB verification stage
Fetch INSTR_DISAPP Mask a randomly selected instruction from fetched instructions
Fetch FETCHQ Flip a randomly selected bit in the tail/head pointer of the fetch queue

Decode OPCODE Flip a random bit in an instruction's opcode
Decode FLAGS Flip a random bit in an instruction's decode flags
Decode SHAMT Flip a random bit in an instruction's logical/arithmetic shift quantity
Decode SRC_LOG_REG Flip a random bit in an instruction's logical source register specifier
Decode SRCA_LOG_REG Flip a random bit in an instruction's logical address source register specifier
Decode RDST_LOG_REG Flip a random bit in an instruction's logical destination register specifier
Decode LAT Flip a random bit in an instruction's latency
Decode IMM Flip a random bit in an instruction's signed immediate value field
Decode UIMM Flip a random bit in an instruction's unsigned immediate value field
Decode TARG Flip a random bit in an instruction's branch target address
Decode NUM_RSRC Flip a random bit in an instruction's source operand count
Decode NUM_RSRCA Flip a random bit in an instruction's source operand count, address operand
Decode NUM_RDST Flip a random bit in an instruction's destination operand count
Decode IS_DECISION Flip the bit which indicates whether an instruction is a control-flow decision instruction
Decode LEFT Flip the bit indicating left shift of data (LWL/SWLinstructions)
Decode RIGHT Flip the bit indicating right shift of data LWR/SWR instructions)
Decode SIZE Flip a random bit indicating the size of data (load/store instructions)
Rename REN_MAP_TABLE Flip a random bit of a random mapping in the rename map table
Rename ARCH_MAP_TABLE Flip a random bit of a random mapping in the architecture map table
Rename SHADOW_MAP_TABLE Flip a random bit of a random mapping in a shadow map table
Rename FREE_LIST Flip a random bit of an entry in the physical register free list
Rename FREE_LIST_TAIL Flip a random bit of the physical register free list's tail pointer
Rename CHKPT Randomly pick a shadow map table and flip its availability (used-->free)
Rename REN_MAP_DEST_INDEX Flip a random bit in the index used to write a new mapping to the rename map table
Rename REN_MAP_SRC_INDEX Flip a random bit in the index used to read a source mapping from the rename map table
Rename REN_MAP_OLD_DEST_INDEX Flip a random bit in the index used to read the old register mapping from the rename map table
Rename DEST_PHYS_REG Flip a random bit in the destination physical register mapping carried by an instruction
Rename SRC_PHYS_REG Flip a random bit in the source physical register mapping carried by an instruction
Rename OLD_DEST_PHYS_REG Flip a random bit in the old destination physical register mapping carried by an instruction

Dispatch ROB_WRITE Flip a random bit in the tail pointer to the reorder buffer causing a write to a wrong entry
Dispatch RS_WRITE Overwrite a randomly selected (occupied) entry in the reservation station (RS)
Dispatch LSQ_WRITE Flip a random bit in the tail pointer to the Load Store Queue (LSQ) causing a write to a wrong entry

Backend READY_BIT Flip the ready bit of a random physical register from 0 to 1, causing its dependents to execute prematurely

Backend SPEC_LOAD
Flip a cancel signal sent by a speculatively issued load that misses in the data cache, causing dependents to 
execute with wrong data

Backend WAKEUP_TAG Flip a random bit in a physical register tag that is broadcasted to wakeup dependent instructions
Backend ROB_ID Flip a random bit in the ROB index stored with an instruction, causing it to index a wrong ROB entry
Backend LSQ_TAG Flip a random bit in the LSQ index stored with an instruction, causing it to index a wrong LSQ entry
Backend SRCA_VALUE Flip a random bit in an instruction's effective address (load/store instr.)
Backend SRC_VALUE Flip a random bit in an instruction's source value
Backend DST_VALUE Flip a random bit in an instruction's computed destination value
Backend DCACHE_VALUE Flip a random bit in a load/store instruction's value (going to or coming from the data cache)
Backend COMPLETE_BIT Flip an instruction's completion status in the ROB to true before it completes  

A fault is shown in a black box, its effects on an 
application in grey boxes, and the final outcomes in 
white boxes. The possible effects of a fault on an 
application are, 1) control-flow deviation (CFD), 2) 
silent data corruption (SDC), 3) application deadlock 
(Deadlock/WDOG), and 4) masking of the fault 
(Mask), i.e., it does not have any of the previous 
effects. If an injected fault is detected, the fault 
outcome is indicated by prefixing the effect of the fault 
with the letter ‘A’, signifying an assertion. If an 
injected fault is undetected, the fault outcome is 
indicated by prefixing the effect of the fault with the 
letter ‘U’. Based on this, the list of possible fault 
injection outcomes are (also shown in Figure 3):  
□ ACFD: The fault caused a control-flow deviation, 

and was detected by the fault-checking regimen. 
□ UCFD: The fault caused a control-flow deviation, 

and was not detected by the fault-checking regimen. 

□ ASDC: The fault caused a silent data corruption, and 
was detected by the fault-checking regimen. 

□ USDC: The fault caused a silent data corruption, and 
was not detected by the fault-checking regimen. 

□ AWDOG: The fault caused a deadlock, but was 
detected by the fault-checking regimen before the 
watchdog timeout occurred. 

□ UWDOG: The fault caused a deadlock, and was not 
detected by the fault-checking regimen before the 
watchdog timeout occurred. 

□ USDCWDOG: The fault caused a silent data 
corruption and then a deadlock, and was not detected 
by the fault-checking regimen. 

□ AMASK: The fault was architecturally masked, and 
yet was detected by the fault-checking regimen. 

□ UMASK: The fault was architecturally masked, and 
was not detected by the fault checking regimen. 
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Figure 3. Classification chart for fault injection outcomes. 

5. Results 
5.1. Distribution of injected faults 

Figure 4 shows the distribution of injected faults 
across all pipeline stages. Across benchmarks, the fault 
distribution is fairly uniform. On average, the 
percentage of faults injected in each stage are:  fetch – 
9%, decode – 39%, rename – 24%, dispatch – 7%, and 
backend stages – 21%. Note that the ‘decode’ category 
in Figure 4 includes faults injected in all pipeline stages 
where decode bits are used, not just the decode stage 
itself (this is not reflected in Table 1). 
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Figure 4. Distribution of injected faults. 

Because every fault has the same random chance of 
being injected, faults are distributed in proportion to 
the number of faults modeled in each stage. A pipeline 
stage that models more faults has a larger fraction of 
faults injected in it. We are currently developing a 
synthesizable verilog model of the superscalar pipeline 
to assign non-uniform weights to faults, weighting each 
pipeline stage based on its total area, its total flip-flop 
count, or combinations of these. With a TSMC 180nm 
technology, using areas for weights yields an average 
fault distribution as follows: fetch – 47% (includes 
BTB but not I-cache), decode – 22%, rename – 8%, 
dispatch – 1%, backend – 22%. This area-weighted 
fault distribution yields similar results to the 
distribution above. Most of the results in this section 
are not sensitive to fault distribution: fault outcomes 
per fault type and fault checks per fault type are 
influenced by fault type. The distribution of fault 
outcomes, which includes coverage of unmasked faults 
by the regimen, is influenced by the distribution of 
injected faults, but even in this case the coverage 
results hold for the area-weighted distributions (81% 
reduction in vulnerability compared to 83%). 

5.2. Distribution of fault outcomes 
Figure 5 shows the overall fault outcome 

distribution. The distribution pattern across all 
benchmarks is fairly uniform, and discussion is focused 
on average results. The average breakdown of fault 
outcomes is as follows: those detected by the regimen 
is 60%, those not detected by the regimen but detected 
by the watchdog timer is 9%, and those undetected is 
31%. Several interesting conclusions can be drawn 
from the results. Around 40% of faults (sum of all 
CFD, SDC, and WDOG causing faults) cause harm to 
the application being run, either by corrupting the 
architectural state, committing wrong-path instructions, 
or causing a deadlock. This fairly large percentage is 
motivation to protect processors from transient faults. 
Among all faults detected by the fault-checking 
regimen (ACFD + ASDC + AWDOG + AMASK), the 
part that causes harmful effects is 24% (ACFD + 
ASDC + AWDOG). So, with the fault-checking 
regimen in place, the processor is vulnerable to only 40 
– 24 = 16% of faults, a 60% reduction in vulnerability. 
If a watchdog timer is included in the processor, then 
an additional 9% of faults (those that cause deadlocks) 
can be detected through timeouts (UWDOG + 
USDCWDOG). This further reduces vulnerability to 
harmful faults from 16% to 7%. The overall reduction 
in vulnerability to harmful faults by combining the 
fault-checking regimen with the watchdog timer is 40% 
to 7%, an 83% reduction. This is a substantial result for 
considering a regimen-based approach to processor 
fault tolerance. 
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Figure 5. Distribution of fault outcomes. 

5.3. Distributions per pipeline stage 
To further analyze fault outcomes, the outcome 

distribution in each pipeline stage is considered, as 
shown in Figure 6. This provides a high-level reference 
to analyze fault outcomes, showing the pipeline 
stage(s) where a given fault outcome tends to occur. It 
will be used as the first step in investigating a fault 
outcome, followed by looking at a further breakdown 
of fault outcomes per fault type injected in a pipeline 
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stage, which are shown in Figure 7 through Figure 11 
(left side, marked as (a)). To provide more insight into 
fault detection, a breakdown of fault checks per fault 
type in a pipeline stage is shown in Figure 7 through 
Figure 11 (right side, marked as (b)). 
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Figure 6. Distribution of fault outcomes per pipe stage. 

5.3.1. CFD outcomes. As seen in Figure 6, fault 
outcomes that cause control-flow deviation (*CFD) 
mainly occur in the fetch and dispatch stages, with 
minor incidences in the decode, rename and backend 
stages. For insight, we refer to the fault outcome 
breakdown per fault type in the various pipeline stages. 
Looking at Figure 7(a) (for fetch), we see that four 
among the five fault types (FETCH_PC, 
WRONG_INSTR, INSTR_DISAPP, and FETCHQ) 
are capable of causing invalid breaks in control-flow. 
As expected, instances of these four fault types are the 
main contributors to causing a control-flow deviation 
(see ACFD contribution). All instances of the predicted 
next PC fault (NEXT_PC) get detected early in the 
pipeline by the BTBV check. Looking at Figure 10(a) 
(for dispatch), we find that only the ROB_WRITE fault 
type contributes to CFD. This is expected, because 
writing to wrong ROB entries, breaks control-flow. 
Notice from the fault check distributions in Figure 7(b) 
(for fetch) and Figure 10(b) (for dispatch), no instance 
of CFD-causing faults are undetected. Moreover, the 
majority of them are detected through the SPC check, 
and some, through the ITR check. A small number of 
CFDs are also caused by faults injected in the decode, 
rename and backend stages. Referring to the respective 
fault outcome breakdowns of these pipeline stages 
(Figure 8(a) for decode, Figure 9(a) for rename, and 
Figure 11(a) for backend) reveals that these instances 
of CFD are caused by faults leading to incorrect branch 
computation (e.g., SRC_LOG_REG, IMM etc. in 
decode, REN_MAP_TABLE etc. in rename, and 
READY_BIT, SPEC_LOAD, etc. in the backend). 
Most of the faults are aptly detected (see ACFD) by 
ITR in decode, RNA in rename, and TAC in backend, 
and a very small fraction goes undetected (see UCFD). 

5.3.2. SDC outcomes. Next, we explore outcomes that 
lead to silent data corruption (*SDC). As seen in Figure 
6, the majority of USDC instances occur in the rename 
and backend stages. For insight we refer to their 
respective breakdowns per fault type in Figure 9(a) (for 
rename) and Figure 11(a) (for backend). In the rename 
stage, USDC instances dominantly occur due to the 
REN_MAP_SRC_INDEX fault type. The anomaly 
modeled here is a fault while indexing into the rename 
map table, which is highly likely to cause an instruction 
to produce a wrong value (due to renaming to an 
incorrect source register) and cause a SDC. There is no 
specific fault check in the regimen that is targeted to 
detect it (the consumer counter check only applies to 
reading from wrong source registers after correctly 
renaming). Partial coverage is provided by TAC, which 
can detect faults if the fault-afflicted instruction issues 
before its actual producer, indicated by its non-faulty 
logical source registers. But a large fraction of the 
faults are undetected and end up causing an SDC. 
Referring to Figure 11(a), USDC instances in the 
backend often occur due to faults that directly or 
indirectly affect an output value (e.g., SRC_VALUE, 
DST_VALUE, etc.). Such faults are very likely to 
corrupt an output value that can influence the 
architectural state, hence, cause SDC. The regimen 
does not provide comprehensive coverage to values 
through any of the fault checks. Partial coverage is 
provided by misprediction detection among confident 
branches. But the number of confident branches is 
limited, hence, a large number of such faults go 
undetected (e.g., all SRC_VALUE faults are 
undetected) and end up causing SDC. 
5.3.3. WDOG outcomes. Next, fault outcomes that 
lead to deadlocks are analyzed (*WDOG). We observe 
from Figure 6, that almost all deadlocks are detected by 
the watchdog timer (UWDOG and USDCWDOG), and 
only a small fraction is detected first by regimen-based 
checks (AWDOG). This underscores the advantage of 
including a watchdog timer in a processor. From Figure 
6, deadlocks are mostly caused by faults in the dispatch 
stage. For insight, we look at the per fault type 
breakdown for the dispatch stage in Figure 10(a). As 
seen there, deadlocks are caused by all the fault types. 
This is expected. The ROB_WRITE and RS_WRITE 
faults result in writing instructions to wrong locations 
in the ROB and reservation stations, respectively. If 
instructions wrongly overwrite other instructions, their 
dependents end up waiting endlessly for results. Some 
faults in the backend also contribute noticeably to 
deadlocks, mainly faults impacting the wakeup 
mechanism (WAKEUP_TAG, LSQ_TAG, etc., as 
shown in Figure 11(a)). 
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                                                      (a)                                                                                    (b) 
Figure 7. Fetch stage: (a) Distribution of fault outcomes.  (b) Distribution of fault checks. 
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                                                      (a)                                                                                    (b) 
Figure 8. Decode stage: (a) Distribution of fault outcomes. (b) Distribution of fault checks. 
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                                                        (a)                                                                                    (b) 
Figure 9. Rename stage: (a) Distribution of fault outcomes.  (b) Distribution of fault checks. 

6. Related work 
Other low-cost, high-coverage solutions for 

contemporary superscalar processors include ReStore 
[9] and Dynamic Dataflow Verification (DDFV) [12]. 
ReStore exploits atypical behavior (exceptions, 
confident mispredictions, etc.) as possible symptoms of 
faults. DDFV uses dataflow signatures to confirm that 
producers and consumers communicate correctly, 
exhaustively and implicitly detecting any missteps that 
can occur in the complex machinery that performs this 
communication, including rename, issue, register read, 

and bypass. This rigor comes at the cost of passing and 
storing signatures everywhere that operands exist in the 
datapath, and incurs static and dynamic instruction 
overheads for conveying signatures to the hardware. 
Moreover, dataflow checking is limited to within 
blocks for which the dataflow is statically known (not 
influenced by branches). Argus [11] combines DDFV 
with control-flow and computation checking in a very 
simple core, for comprehensive coverage with very low 
overhead, as such simple cores offer too few resources 
for time or space redundancy. 
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Figure 10. Dispatch stage: (a) Distribution of fault outcomes. (b) Distribution of fault checks. 
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Figure 11. Backend stages: (a) Distribution of fault outcomes.  (b) Distribution of fault checks. 

7. Summary and future work 
Conventional processor fault tolerance based on 

time/space redundancy is robust but prohibitively 
expensive for commodity processors. This paper 
explored an unconventional approach to designing a 
cost-effective fault-tolerant superscalar processor. The 
idea is to engage a regimen of microarchitecture-level 
fault checks. A few simple checks can detect many 
arbitrary faults in large units, by observing 
microarchitecture-level behavior and anomalies in this 
behavior. We showed for the first time that the 
regimen-based approach provides substantial coverage 
of an entire superscalar processor. Analysis revealed 
vulnerable areas which will be the focus for regimen 
additions. For future work, we are developing a 
synthesizable verilog superscalar model, which will be 
leveraged for weighting fault distributions, prototyping 
the regimen, and evaluating its area/power overheads. 
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