

Coverage of a Microarchitecture-level Fault Check Regimen
in a Superscalar Processor

Vimal Reddy

Qualcomm Inc.
vreddy@qualcomm.com

Eric Rotenberg
North Carolina State University

ericro@ece.ncsu.edu

Abstract

Conventional processor fault tolerance based on
time/space redundancy is robust but prohibitively
expensive for commodity processors. This paper
explores an unconventional approach to designing a
cost-effective fault-tolerant superscalar processor. The
idea is to engage a regimen of microarchitecture-level
fault checks. A few simple microarchitecture-level fault
checks can detect many arbitrary faults in large units,
by observing microarchitecture-level behavior and
anomalies in this behavior. Previously, we separately
proposed checks for the fetch and decode stages,
rename stage, and issue stage of a contemporary
superscalar processor. While each piece hinted at the
possibility of a complete regimen – for an overall fault-
tolerant superscalar processor – this totality was not
explored. This paper provides the culmination by
building a full regimen into a superscalar processor.
We show for the first time that the regimen-based
approach provides substantial coverage of an entire
superscalar processor. Analysis reveals vulnerable
areas which should be the focus for regimen additions.

1. Introduction
Conventional approaches to processor fault

tolerance use space or time redundancy, providing
robust fault tolerance but incurring high costs (in terms
of performance, area, and power). Explicit redundancy
is suitable for high-end computing systems, but may
not be viable in commodity systems. These systems
demand a more cost-effective fault tolerance solution,
that provides less coverage than explicit duplication but
substantial coverage nonetheless.

This paper explores a new, unconventional approach
to designing a cost-effective fault-tolerant superscalar
processor. The idea is to engage a regimen of
microarchitecture-level fault checks. A
microarchitecture-level fault check indirectly and
broadly detects low-level transient faults, by observing
the microarchitecture-level anomalies they cause.

Thereby, a few simple checks can detect many arbitrary
faults in large units.

In prior work, we separately proposed checks for
covering the fetch and decode stages [1], the rename
stage, and the issue stage of a contemporary
superscalar processor [2]. While each piece hinted at
the possibility of a complete regimen – for an overall
fault-tolerant superscalar processor – this totality was
not explored or evaluated. This paper provides the
culmination by building a full regimen into a
superscalar processor, and thoroughly evaluating the
coverage offered by a regimen-based approach through
extensive fault-injection experiments.

This paper makes the following key contributions:
• We describe an overall microarchitecture-level fault

check regimen. The regimen is a composition of our
previous separate microarchitecture-level fault
checks [1,2], key improvements to these checks,
and some new checks.

• We develop a high-level fault injection strategy for
use with cycle-accurate simulators. All pipeline
stages of a contemporary superscalar processor are
analyzed to understand how faults are ultimately
manifested. This analysis is used to enumerate a list
of faults to inject in the cycle-accurate simulator.
The enumerated faults achieve high fault modeling
coverage of the pipeline, without resorting to RTL
or gate-level fault injection.

• We demonstrate for the first time that a
microarchitecture-level fault check regimen can
provide substantial coverage of an overall
superscalar processor pipeline. Extensive fault
injection experiments show that the regimen detects
83% of non-masked faults, on average. This
confirmation could only be obtained by assembling
a full regimen and injecting a broad spectrum of
fault types throughout the pipeline, whereas our
precursor work used rather localized and targeted
fault injection. For example, our holistic study
exposes cases where faults are detected by checks
in ways that were not anticipated or intended.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 1 DSN 2008: Reddy & Rotenberg

• We present detailed breakdowns of fault outcomes
and fault checks, (i) across all pipestages, (ii) per
pipestage, and (iii) per fault type within pipestages.
These results provide insight into which faults are
chief culprits for which fault outcomes, and which
fault checks detect them. The results also identify
remaining vulnerable areas of the regimen, for
guiding regimen additions.

2. Fault check regimen
This section describes the checks that make up the

fault check regimen used in this paper.
2.1. Inherent Time Redundancy (ITR)

Inherent time redundancy (ITR) exploits program
repetition to detect faults in decode signals [1]. Decode
signals of instruction traces are combined into
signatures and stored in an ITR cache. When an
instruction trace repeats, its signature is re-created and
checked with the ITR cache for a match. Misses do not
directly lead to loss in fault detection coverage,
because faults in instruction traces that miss can be
detected by future hits to their signatures. In the
previous study [1], we showed that an ITR cache can
effectively detect faults in the fetch and decode stages
of the pipeline.

In this paper, we make ITR more effective by
moving the ITR cache to the retirement stage. This
extends fault coverage to decode signals across all
pipeline stages, in addition to protecting the fetch and
decode units. The pipeline is modified such that, when
certain decode bits are used for the last time and
discarded, they update a signature which flows with the
instruction. When instructions drain from the pipeline,
their signatures are written into the reorder buffer
(ROB). Finally, at retirement, the ITR cache is
accessed to compare instruction trace signatures for
faults.
2.2. Register Name Authentication (RNA)

Register Name Authentication (RNA) [2] exploits
redundancy among renaming structures used in out-of-
order superscalar processors, to detect faults in the
destination register mappings of instructions. RNA
includes two checks, the previous mapping check
(referred to as RNA1) and the writeback state check
(RNA2). RNA1 is based on the insight that, when an
instruction’s logical destination register is renamed, the
previous physical register mapping in the rename map
table corresponds to the previous producer of that
logical destination register, and the same previous
physical register mapping should be in the architectural
map table when the instruction commits. By comparing
the previous physical register mapping recorded at the
register rename stage to the corresponding mapping in

the architectural map table at the commit stage, RNA1
can detect faults in several rename structures: the
rename map table, architectural map table, shadow map
tables (branch checkpoints), and the previous and
current mapping fields of the ROB. However, RNA1
cannot detect faults in which an erroneous mapping
appears consistent among all the structures. Faults in
the free list and the destination renaming logic (which
assigns new mappings from the free list) fall into this
class. Nor can RNA1 detect faults in instructions’
destination register mappings after the dispatch stage,
as these mappings fall outside the scope of the overall
renaming logic.

RNA2 aims to detect such faults using the insight
that they cause invalid register conflicts between
instructions. Basically, an erroneously mapped physical
register might already be in use by another active
instruction, committed to architectural state, or still
available in the free list. Asserting the state of a
physical register at the register writeback stage
(confirming that it is not already ready and not in the
free list) exposes conflicts, hence, detects these faults.
2.3. Timestamp-based Assertion Check (TAC)

Timestamp-based Assertion Checking (TAC) [2]
exploits the insight that an instruction should execute
only after all of its producers have executed. This
invariant is true even in an out-of-order superscalar
processor, where instructions that do not depend on
each other issue in parallel or out-of-order. To confirm
time-orderliness within a data dependence chain, TAC
assigns timestamps to instructions when they issue, and
compares timestamps in the retirement stage to assert
that instructions issued only after their producers. The
out-of-order scheduler is comprised of complex
hardware structures for waking up and selecting ready
instructions for issuing. Transient faults in these
structures or any associated logic can cause instructions
to issue prematurely. TAC detects all of these faults
with one simple assertion check.
2.4. Sequential PC Check (SPC)

With the SPC check [1], the idea is to maintain a
retirement program counter (PC) and assert that a
committing instruction’s PC matches the retirement PC.
The retirement PC is updated as follows. Non-branch
instructions add their length (which can be recorded at
decode for variable-length ISAs) to the retirement PC
and branches update the retirement PC with their
calculated PC. Comparing a committing instruction’s
PC with the retirement PC will detect a discontinuity
between two otherwise sequential instructions. The
SPC check can detect faults that affect sequential
control-flow, for example, faults on the PC or a ROB

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 2 DSN 2008: Reddy & Rotenberg

bookkeeping fault that might cause some valid
instructions in the ROB to be overwritten.
2.5. Register Consumer Counter (CC)

Source register mappings originate in the source
rename logic and the rename map table (of which the
shadow map tables are an extension), and propagate
with the instruction after renaming.

The consumer counter (CC) check – newly
proposed in this paper – aims to detect faults in source
mappings after renaming. The CC check detects such
faults by maintaining a counter per physical register,
which indicates the number of unissued consumers of
the physical register, and asserting that the consumer
counter is non-zero when the register is read. The
counter is incremented in the rename stage, when
source mappings are initially determined. In the
register read stage, it is asserted that the consumer
counter of a register being read is non-zero, following
which, the counter is decremented. Squashing a
consumer, like issuing a consumer, causes its source
registers’ counters to be decremented as well.

If a source mapping in the rename map table (or a
shadow map table) is modified by a transient fault, the
now faulty source mapping will be detected by RNA1,
albeit after a consumer of the faulty mapping commits.
Specifically, when the next producer of the same
logical register commits, its recorded previous mapping
will differ from the corresponding mapping in the
architectural map table.

Neither the CC check nor RNA1 check can detect
faults in the source rename logic, however. In this case,
the wrong counter is incremented and decremented
consistently (CC) and the previous mapping recorded
by the next producer is correct (RNA1). Such faults can
be detected by re-renaming instructions in the
retirement stage, using the architectural map table,
which should yield the same source mappings as the
rename stage unless there was a fault in either the
source renaming logic or the source re-renaming logic.
The extra cost of re-renaming is moderate considering
that it can be embedded in the cost of the TAC check,
which reads timestamps of logical source registers from
the architectural map table. We did not include re-
renaming in the regimen, however. It is left for future
work.

Finally, note that some source mapping faults are
ultimately detected by TAC (if the source mapping
links a consumer to a wrong producer that executes
before the right producer) or the watchdog timer (if the
source mapping causes the consumer to never issue).
2.6. Confident Branch Misprediction (ConfBr)

Confidently-predicted branches have been shown to
be useful for detecting transient faults [9,10].

Mispredictions among confidently-predicted branches
are considered symptoms of transient faults. Upon
detecting the misprediction of a confidently-predicted
branch, the pipeline is flushed and restarted from the
instruction at the head of the ROB. The ConfBr check
detects some faults affecting uncommitted (speculative)
values that directly or indirectly feed into a branch.
2.7. BTB Verify (BTBV)

The BTB Verify (BTBV) check, newly proposed in
this paper, exploits inherent redundancy between the
fetch and decode stages.

The BTB (branch target buffer) in the fetch stage is
used to identify branches and provide their taken target
addresses, earlier than the decode stage (for fast next-
PC prediction). If there is a BTB miss, the branch is
decoded one or a few cycles later in the decode stage,
providing the same information, only late.

We leverage the inherent redundancy between the
branch information generated by a BTB hit and the
branch information generated a cycle later in the
decode stage. They should be consistent. If not, there is
a fault in either the BTB logic or the decode logic.

3. Evaluating coverage
3.1. Fault injection strategy

A particle can flip a bit stored in a latch, flip-flop, or
SRAM cell, or cause a transient pulse in a net that
might lead to incorrect outputs from combinational
logic blocks which in turn may get latched. Directly
modeling these low-level faults requires a gate-level
implementation of the processor. Although this method
is highly accurate, it has several drawbacks. First, a
gate-level model may not be available early in the
design. Second, fault simulation at the gate level is very
time consuming. Compounding this problem is the
need for long observation windows following injection
of a fault, to determine if the fault is eventually
detected by microarchitecture-level checks. Third,
faults injected at the gate level are often masked at the
logic level or architectural level [3,4,5]. While inherent
fault masking should be part of an accurate reliability
estimate, it is not useful in evaluating the effectiveness
of a fault-checking regimen.

Therefore, it is desirable to have a reasonably
accurate fault injection strategy that can be used with a
C/C++ cycle-accurate microarchitecture simulator,
which we refer to as a timing simulator throughout. The
challenge in using a timing simulator for fault injection
is ensuring that the modeled faults comprehensively
cover low level faults. We take a new approach to
ensure high fault modeling coverage. The idea is to
characterize the high level effects of low level faults in
each pipeline stage, and aggregate many low level

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 3 DSN 2008: Reddy & Rotenberg

faults into fewer high level fault manifestations that can
be modeled in a timing simulator.

In hierarchical simulation [6], the effects of low
level faults are propagated to higher levels of
abstraction using fault dictionaries. Essentially, our
novel contribution is a fault dictionary for use in a
timing simulator of a superscalar pipeline, derived from
a manual and comprehensive analysis of the pipeline.

Section 3.2 presents fault analysis of a detailed 2-
way superscalar pipeline model. Each pipeline stage is
thoroughly analyzed to aggregate faults into
manifestations which can be modeled in a timing
simulator. The outcome of this exercise is a
comprehensive list of high level faults in each pipeline
stage.
3.2. Fault analysis of a superscalar pipeline

A typical superscalar processor pipeline is
comprised of several stages that process instructions in
parallel, as depicted in Figure 1 (a) and (b). The
instruction fetch (IF) stage predicts branches and
fetches instructions from the instruction cache. The
instruction decode stage (ID) generates decode signals
for processing the instruction. The rename stage (REN)
eliminates output and anti-dependencies in the static
program representation. The dispatch stage (DISP)
inserts instructions into the reservation stations (i.e., the
issue queue) and the reorder buffer, and also the
load/store queues, in the case of memory instructions.
The issue stage (IS) dynamically schedules instructions
for execution based on data availability and issue
bandwidth. After being issued, instructions read source
values from the register file in the register read stage
(RR) and begin executing in the execution stage (EX).
Loads and stores go through the address generation
(AGEN) stage instead of the EX stage, followed by
disambiguation (store-load dependence checking),
store-to-load forwarding, and data cache access (M).
After execution or data cache access, instructions write
their results into the register file and bypass them to
dependent instructions in the writeback stage (WB).
Instructions are finally retired in original program order
from the reorder buffer in the retirement stage (RE).

 (a)

 (b)
Figure 1. Superscalar processor pipeline for (a) non-
memory and (b) memory instructions.

For fault analysis, each pipeline stage is examined to
see how low level faults in that stage would manifest.
The goal is to aggregate as many faults into as few
manifestations as possible, without losing fault
modeling coverage of the pipeline.

3.2.1. Example: fault analysis of fetch & decode.
Due to limited space, we only describe fault analysis of
the fetch and decode stages of the pipeline, as an
example. For comprehensive analysis of all stages, the
reader is referred to the corresponding Ph.D. thesis [7].

Figure 2 is a detailed illustration of the fetch and
decode stages of a 2-way superscalar pipeline. There
are three fetch stages, Fetch0, Fetch1 and Fetch2. In
Fetch0, the instruction cache unit is accessed using the
program counter (PC). The instruction cache unit
(ICU) is comprised of the instruction translation
lookaside buffer (I-TLB), instruction cache, and
instruction alignment logic. The outputs of the ICU are
a maximum of two instructions, the fetch bandwidth of
the example processor. In some cases, the output could
be only one or no instructions. To signify the scenario,
instructions are marked with valid bits (v1 and v2). In
parallel with accessing the ICU, the PC is also fed to
the Next PC Prediction Unit for predicting the PC for
the next cycle. The prediction is based on inputs from a
branch target buffer (BTB), conditional branch
predictor, and return address stack (these are not
explicitly shown in the figure). The predicted next PC
is fed back as a candidate PC for the next cycle.

The Fetch1 stage checks misfetches due to wrong
branch information from the Next PC Prediction Unit.
Inputs to Fetch1 are the instruction packet from the
Fetch0 stage, BTB information that was assumed by
the Next PC Prediction Unit to predict the next PC (in
the case of a BTB miss, the Next PC Prediction Unit
assumes that the fetched packet contains no branches),
and the predicted next PC itself. The fetched packet is
decoded to extract branch information, which is then
compared with the BTB information used by the Next
PC Prediction Unit. On detecting an inconsistency, the
Fetch0 stage is redirected to the override PC, and
instructions in the Fetch0 stage are flushed. The Next
PC Prediction Unit is also updated with correct
information (not shown in the figure).

In the Fetch2 stage, the fetched instructions are
entered into a fetch queue. The fetch queue decouples
the decode unit from the fetch unit. The FetchQ
Allocator tracks the number of entries in the fetch
queue, and if space is available, enters the new
instructions at the tail of the queue (tail and tail+1).
The FetchQ Deallocator reads instructions from the
head of the fetch queue (head and head+1) and
provides them to the Decode stage.

In the Decode stage, instructions are fully decoded
to establish signals that govern the processing of the
instructions in later pipeline stages.

In Figure 2, the numbered circles indicate the fault
manifestations modeled in the fetch and decode stages.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 4 DSN 2008: Reddy & Rotenberg

Figure 2. Fault analysis of the fetch and decode stages.

(1) corresponds to the PC. Many faults in the fetch
unit ultimately manifest as a faulty PC. This includes
faults in the Next PC Prediction Unit, selection of a
wrong PC due to faulty signals to the PC mux, and
faults in the PC register itself. This manifestation is
modeled in the simulator by flipping a random bit in
the PC.

(2) corresponds to the instruction stream returned by
the ICU. Many faults in the ICU manifest as a wrong
instruction stream. This includes faults affecting the I-
cache access, instruction alignment, and branch
location. This manifestation is modeled by arbitrarily
masking off instructions from the fetched packet.

(3) corresponds to instruction validity. If valid bits
are faulty, bad instructions can appear or good
instructions can disappear from the pipeline. This is
similar in spirit to (2), but is modeled by applying it to
only one instruction.

(4) corresponds to the Override PC inferred by the
branch pre-decode stage (Fetch1) to confirm BTB
predictions made in the Fetch0 stage. Faults in the
branch pre-decode/BTB verification stage manifest as
an incorrectly inferred Override PC. This includes
faults that cause false detection of a branch,
overlooking of a branch, an incorrect branch position in
the instruction packet, or an incorrect branch target
address. This manifestation is modeled by flipping a
random bit in the inferred Override PC.

(5) corresponds to the fetch queue. Many faults in
the fetch queue manifest as reading and writing wrong
entries. This includes faults in allocation and de-
allocation of entries, bookkeeping, and stall signals.
This manifestation is modeled by flipping a bit in the
fetch queue head or tail pointers.

(6) corresponds to decode signals. Many faults in
the fetch and decode stages manifest as the production
of wrong decode signals. These include faults in the
registers holding instructions, the decode logic, and the
Decode stage’s output registers. These are modeled by
flipping an arbitrary bit in one of the many decode
signals, shown in Table 1.
3.2.2. Fault analysis of all pipeline stages. Similar
analysis was performed for all pipeline stages [7], and
the resulting list of fault manifestations is shown in
Table 1.

4. Methodology
The faults identified in Section 3.2 are modeled in a

timing simulator. The simulator models a
microarchitecture similar to the MIPS R10000 [8] and
outlined in Section 3.2. Key parameters of the
microarchitecture are: 4-way superscalar pipeline with
64-entry ROB; 64KB 4-way set-associative L1
instruction and data caches; 1 MB 4-way set-
associative unified L2 cache with 10-cycle hit time and
100-cycle miss time; 216-entry gshare branch predictor
with confidence threshold of 64. The ITR cache is
16KB (1,024 entries) 2-way set-associative.

A subset of the SPEC2K benchmark suite is used
for evaluation. For each benchmark, one thousand
faults are randomly injected. Fault injection involves
randomly selecting a fault to inject from the list of
faults. A separate “golden” (fault-free) simulator is run
in parallel with the faulty timing simulator. When an
instruction is committed to the architectural state in the
timing simulator, it is compared with its golden
counterpart to determine whether or not the
architectural state is being corrupted. Any fault that
leads to corruption of architectural state is classified as
a potential silent data corruption (SDC) fault. Likewise,
if no corruption of architectural state is observed for a
set period of time after a fault is injected (the
observation window), it is classified as a masked fault.
In this study, an observation window of one million
cycles is used. A watchdog timer (shown as WDOG in
the results) is included in the experiments to check for
deadlocks.

An injected fault leads to one of many possible
outcomes, based on the combination of (1) the effect of
the fault on the application, and (2) whether or not the
fault is detected by the fault check regimen and how.
Figure 3 shows the possible fault outcomes as a chart.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 5 DSN 2008: Reddy & Rotenberg

Table 1. Table of faults for all pipeline stages.
Pipe Stage Fault Description

Fetch FETCH_PC Flip a random bit in the program counter
Fetch WRONG_INSTR Remove an arbitrary number of fetched instructions
Fetch NEXT_PC Flip a random bit in the override PC from the branch pre-decode/BTB verification stage
Fetch INSTR_DISAPP Mask a randomly selected instruction from fetched instructions
Fetch FETCHQ Flip a randomly selected bit in the tail/head pointer of the fetch queue

Decode OPCODE Flip a random bit in an instruction's opcode
Decode FLAGS Flip a random bit in an instruction's decode flags
Decode SHAMT Flip a random bit in an instruction's logical/arithmetic shift quantity
Decode SRC_LOG_REG Flip a random bit in an instruction's logical source register specifier
Decode SRCA_LOG_REG Flip a random bit in an instruction's logical address source register specifier
Decode RDST_LOG_REG Flip a random bit in an instruction's logical destination register specifier
Decode LAT Flip a random bit in an instruction's latency
Decode IMM Flip a random bit in an instruction's signed immediate value field
Decode UIMM Flip a random bit in an instruction's unsigned immediate value field
Decode TARG Flip a random bit in an instruction's branch target address
Decode NUM_RSRC Flip a random bit in an instruction's source operand count
Decode NUM_RSRCA Flip a random bit in an instruction's source operand count, address operand
Decode NUM_RDST Flip a random bit in an instruction's destination operand count
Decode IS_DECISION Flip the bit which indicates whether an instruction is a control-flow decision instruction
Decode LEFT Flip the bit indicating left shift of data (LWL/SWLinstructions)
Decode RIGHT Flip the bit indicating right shift of data LWR/SWR instructions)
Decode SIZE Flip a random bit indicating the size of data (load/store instructions)
Rename REN_MAP_TABLE Flip a random bit of a random mapping in the rename map table
Rename ARCH_MAP_TABLE Flip a random bit of a random mapping in the architecture map table
Rename SHADOW_MAP_TABLE Flip a random bit of a random mapping in a shadow map table
Rename FREE_LIST Flip a random bit of an entry in the physical register free list
Rename FREE_LIST_TAIL Flip a random bit of the physical register free list's tail pointer
Rename CHKPT Randomly pick a shadow map table and flip its availability (used-->free)
Rename REN_MAP_DEST_INDEX Flip a random bit in the index used to write a new mapping to the rename map table
Rename REN_MAP_SRC_INDEX Flip a random bit in the index used to read a source mapping from the rename map table
Rename REN_MAP_OLD_DEST_INDEX Flip a random bit in the index used to read the old register mapping from the rename map table
Rename DEST_PHYS_REG Flip a random bit in the destination physical register mapping carried by an instruction
Rename SRC_PHYS_REG Flip a random bit in the source physical register mapping carried by an instruction
Rename OLD_DEST_PHYS_REG Flip a random bit in the old destination physical register mapping carried by an instruction

Dispatch ROB_WRITE Flip a random bit in the tail pointer to the reorder buffer causing a write to a wrong entry
Dispatch RS_WRITE Overwrite a randomly selected (occupied) entry in the reservation station (RS)
Dispatch LSQ_WRITE Flip a random bit in the tail pointer to the Load Store Queue (LSQ) causing a write to a wrong entry

Backend READY_BIT Flip the ready bit of a random physical register from 0 to 1, causing its dependents to execute prematurely

Backend SPEC_LOAD
Flip a cancel signal sent by a speculatively issued load that misses in the data cache, causing dependents to
execute with wrong data

Backend WAKEUP_TAG Flip a random bit in a physical register tag that is broadcasted to wakeup dependent instructions
Backend ROB_ID Flip a random bit in the ROB index stored with an instruction, causing it to index a wrong ROB entry
Backend LSQ_TAG Flip a random bit in the LSQ index stored with an instruction, causing it to index a wrong LSQ entry
Backend SRCA_VALUE Flip a random bit in an instruction's effective address (load/store instr.)
Backend SRC_VALUE Flip a random bit in an instruction's source value
Backend DST_VALUE Flip a random bit in an instruction's computed destination value
Backend DCACHE_VALUE Flip a random bit in a load/store instruction's value (going to or coming from the data cache)
Backend COMPLETE_BIT Flip an instruction's completion status in the ROB to true before it completes

A fault is shown in a black box, its effects on an
application in grey boxes, and the final outcomes in
white boxes. The possible effects of a fault on an
application are, 1) control-flow deviation (CFD), 2)
silent data corruption (SDC), 3) application deadlock
(Deadlock/WDOG), and 4) masking of the fault
(Mask), i.e., it does not have any of the previous
effects. If an injected fault is detected, the fault
outcome is indicated by prefixing the effect of the fault
with the letter ‘A’, signifying an assertion. If an
injected fault is undetected, the fault outcome is
indicated by prefixing the effect of the fault with the
letter ‘U’. Based on this, the list of possible fault
injection outcomes are (also shown in Figure 3):
□ ACFD: The fault caused a control-flow deviation,

and was detected by the fault-checking regimen.
□ UCFD: The fault caused a control-flow deviation,

and was not detected by the fault-checking regimen.

□ ASDC: The fault caused a silent data corruption, and
was detected by the fault-checking regimen.

□ USDC: The fault caused a silent data corruption, and
was not detected by the fault-checking regimen.

□ AWDOG: The fault caused a deadlock, but was
detected by the fault-checking regimen before the
watchdog timeout occurred.

□ UWDOG: The fault caused a deadlock, and was not
detected by the fault-checking regimen before the
watchdog timeout occurred.

□ USDCWDOG: The fault caused a silent data
corruption and then a deadlock, and was not detected
by the fault-checking regimen.

□ AMASK: The fault was architecturally masked, and
yet was detected by the fault-checking regimen.

□ UMASK: The fault was architecturally masked, and
was not detected by the fault checking regimen.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 6 DSN 2008: Reddy & Rotenberg

Figure 3. Classification chart for fault injection outcomes.

5. Results
5.1. Distribution of injected faults

Figure 4 shows the distribution of injected faults
across all pipeline stages. Across benchmarks, the fault
distribution is fairly uniform. On average, the
percentage of faults injected in each stage are: fetch –
9%, decode – 39%, rename – 24%, dispatch – 7%, and
backend stages – 21%. Note that the ‘decode’ category
in Figure 4 includes faults injected in all pipeline stages
where decode bits are used, not just the decode stage
itself (this is not reflected in Table 1).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip

ga
p

gc
c

gz
ip

pa
rs

er
tw

olf

vo
rte

x
vp

r
Avg

p
er

ce
n

ta
g

e
o

f
to

ta
l f

au
lt

s
in

je
ct

ed

Backend
Dispatch
Rename
Decode
Fetch

Figure 4. Distribution of injected faults.

Because every fault has the same random chance of
being injected, faults are distributed in proportion to
the number of faults modeled in each stage. A pipeline
stage that models more faults has a larger fraction of
faults injected in it. We are currently developing a
synthesizable verilog model of the superscalar pipeline
to assign non-uniform weights to faults, weighting each
pipeline stage based on its total area, its total flip-flop
count, or combinations of these. With a TSMC 180nm
technology, using areas for weights yields an average
fault distribution as follows: fetch – 47% (includes
BTB but not I-cache), decode – 22%, rename – 8%,
dispatch – 1%, backend – 22%. This area-weighted
fault distribution yields similar results to the
distribution above. Most of the results in this section
are not sensitive to fault distribution: fault outcomes
per fault type and fault checks per fault type are
influenced by fault type. The distribution of fault
outcomes, which includes coverage of unmasked faults
by the regimen, is influenced by the distribution of
injected faults, but even in this case the coverage
results hold for the area-weighted distributions (81%
reduction in vulnerability compared to 83%).

5.2. Distribution of fault outcomes
Figure 5 shows the overall fault outcome

distribution. The distribution pattern across all
benchmarks is fairly uniform, and discussion is focused
on average results. The average breakdown of fault
outcomes is as follows: those detected by the regimen
is 60%, those not detected by the regimen but detected
by the watchdog timer is 9%, and those undetected is
31%. Several interesting conclusions can be drawn
from the results. Around 40% of faults (sum of all
CFD, SDC, and WDOG causing faults) cause harm to
the application being run, either by corrupting the
architectural state, committing wrong-path instructions,
or causing a deadlock. This fairly large percentage is
motivation to protect processors from transient faults.
Among all faults detected by the fault-checking
regimen (ACFD + ASDC + AWDOG + AMASK), the
part that causes harmful effects is 24% (ACFD +
ASDC + AWDOG). So, with the fault-checking
regimen in place, the processor is vulnerable to only 40
– 24 = 16% of faults, a 60% reduction in vulnerability.
If a watchdog timer is included in the processor, then
an additional 9% of faults (those that cause deadlocks)
can be detected through timeouts (UWDOG +
USDCWDOG). This further reduces vulnerability to
harmful faults from 16% to 7%. The overall reduction
in vulnerability to harmful faults by combining the
fault-checking regimen with the watchdog timer is 40%
to 7%, an 83% reduction. This is a substantial result for
considering a regimen-based approach to processor
fault tolerance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip

ga
p

gc
c

gz
ip

pa
rs

er
tw

olf

vo
rte

x
vp

r
Avg

pe
rc

en
ta

g
e

o
f t

o
ta

l f
au

lt
s

in
je

ct
ed

USDC
UWDOG
UMASK
USDCWDOG
UCFD
AWDOG
AMASK
ASDC
ACFD

Figure 5. Distribution of fault outcomes.

5.3. Distributions per pipeline stage
To further analyze fault outcomes, the outcome

distribution in each pipeline stage is considered, as
shown in Figure 6. This provides a high-level reference
to analyze fault outcomes, showing the pipeline
stage(s) where a given fault outcome tends to occur. It
will be used as the first step in investigating a fault
outcome, followed by looking at a further breakdown
of fault outcomes per fault type injected in a pipeline

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 7 DSN 2008: Reddy & Rotenberg

stage, which are shown in Figure 7 through Figure 11
(left side, marked as (a)). To provide more insight into
fault detection, a breakdown of fault checks per fault
type in a pipeline stage is shown in Figure 7 through
Figure 11 (right side, marked as (b)).

0%

20%

40%

60%

80%

100%

Fetch Decode Rename Dispatch Backend

pe
rc

en
ta

ge
 o

f i
nj

ec
te

d
fa

ul
ts

 in
 th

e
pi

pe
lin

e
st

ag
e

USDC
UWDOG
UMASK
USDCWDOG
UCFD
AWDOG
AMASK
ASDC
ACFD

Figure 6. Distribution of fault outcomes per pipe stage.

5.3.1. CFD outcomes. As seen in Figure 6, fault
outcomes that cause control-flow deviation (*CFD)
mainly occur in the fetch and dispatch stages, with
minor incidences in the decode, rename and backend
stages. For insight, we refer to the fault outcome
breakdown per fault type in the various pipeline stages.
Looking at Figure 7(a) (for fetch), we see that four
among the five fault types (FETCH_PC,
WRONG_INSTR, INSTR_DISAPP, and FETCHQ)
are capable of causing invalid breaks in control-flow.
As expected, instances of these four fault types are the
main contributors to causing a control-flow deviation
(see ACFD contribution). All instances of the predicted
next PC fault (NEXT_PC) get detected early in the
pipeline by the BTBV check. Looking at Figure 10(a)
(for dispatch), we find that only the ROB_WRITE fault
type contributes to CFD. This is expected, because
writing to wrong ROB entries, breaks control-flow.
Notice from the fault check distributions in Figure 7(b)
(for fetch) and Figure 10(b) (for dispatch), no instance
of CFD-causing faults are undetected. Moreover, the
majority of them are detected through the SPC check,
and some, through the ITR check. A small number of
CFDs are also caused by faults injected in the decode,
rename and backend stages. Referring to the respective
fault outcome breakdowns of these pipeline stages
(Figure 8(a) for decode, Figure 9(a) for rename, and
Figure 11(a) for backend) reveals that these instances
of CFD are caused by faults leading to incorrect branch
computation (e.g., SRC_LOG_REG, IMM etc. in
decode, REN_MAP_TABLE etc. in rename, and
READY_BIT, SPEC_LOAD, etc. in the backend).
Most of the faults are aptly detected (see ACFD) by
ITR in decode, RNA in rename, and TAC in backend,
and a very small fraction goes undetected (see UCFD).

5.3.2. SDC outcomes. Next, we explore outcomes that
lead to silent data corruption (*SDC). As seen in Figure
6, the majority of USDC instances occur in the rename
and backend stages. For insight we refer to their
respective breakdowns per fault type in Figure 9(a) (for
rename) and Figure 11(a) (for backend). In the rename
stage, USDC instances dominantly occur due to the
REN_MAP_SRC_INDEX fault type. The anomaly
modeled here is a fault while indexing into the rename
map table, which is highly likely to cause an instruction
to produce a wrong value (due to renaming to an
incorrect source register) and cause a SDC. There is no
specific fault check in the regimen that is targeted to
detect it (the consumer counter check only applies to
reading from wrong source registers after correctly
renaming). Partial coverage is provided by TAC, which
can detect faults if the fault-afflicted instruction issues
before its actual producer, indicated by its non-faulty
logical source registers. But a large fraction of the
faults are undetected and end up causing an SDC.
Referring to Figure 11(a), USDC instances in the
backend often occur due to faults that directly or
indirectly affect an output value (e.g., SRC_VALUE,
DST_VALUE, etc.). Such faults are very likely to
corrupt an output value that can influence the
architectural state, hence, cause SDC. The regimen
does not provide comprehensive coverage to values
through any of the fault checks. Partial coverage is
provided by misprediction detection among confident
branches. But the number of confident branches is
limited, hence, a large number of such faults go
undetected (e.g., all SRC_VALUE faults are
undetected) and end up causing SDC.
5.3.3. WDOG outcomes. Next, fault outcomes that
lead to deadlocks are analyzed (*WDOG). We observe
from Figure 6, that almost all deadlocks are detected by
the watchdog timer (UWDOG and USDCWDOG), and
only a small fraction is detected first by regimen-based
checks (AWDOG). This underscores the advantage of
including a watchdog timer in a processor. From Figure
6, deadlocks are mostly caused by faults in the dispatch
stage. For insight, we look at the per fault type
breakdown for the dispatch stage in Figure 10(a). As
seen there, deadlocks are caused by all the fault types.
This is expected. The ROB_WRITE and RS_WRITE
faults result in writing instructions to wrong locations
in the ROB and reservation stations, respectively. If
instructions wrongly overwrite other instructions, their
dependents end up waiting endlessly for results. Some
faults in the backend also contribute noticeably to
deadlocks, mainly faults impacting the wakeup
mechanism (WAKEUP_TAG, LSQ_TAG, etc., as
shown in Figure 11(a)).

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 8 DSN 2008: Reddy & Rotenberg

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FETCH_P
C

NEXT_P
C

W
RONG_I

NSTR

IN
STR_D

IS
APP

FETCHQ

pe
rc

en
ta

ge
 o

f f
et

ch
 fa

ul
ts

UWDOG
UMASK
AMASK
ASDC
ACFD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FETCH_P
C

NEXT_P
C

W
RONG

_IN
STR

IN
STR_D

IS
APP

FETCHQ

pe
rc

en
ta

ge
 o

f f
au

lt
ch

ec
ks

 p
er

 fa
ul

t

BTBV

SPC

ITR

 (a) (b)
Figure 7. Fetch stage: (a) Distribution of fault outcomes. (b) Distribution of fault checks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

OPCODE

FLA
GS

SHAMT

SRC_L
OG_R

EG

SRCA_L
OG_R

EG

RDST_L
OG_R

EG
LA

T
IM

M
UIM

M
TARG

NUM
_R

SRC

NUM
_R

SRCA

NUM
_R

DST

IS
_D

ECIS
IO

N
LE

FT

RIG
HT

SIZ
E

pe
rc

en
ta

ge
 o

f d
ec

od
e

fa
ul

ts

USDC

UWDOG

UMASK

AWDOG

AMASK

ASDC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

OPCODE

FLA
GS

SHAM
T

SRC_L
OG_R

EG

SRCA_L
OG_R

EG

RDST_L
OG_R

EG
LA

T
IM

M
UIM

M
TARG

NUM
_R

SRC

NUM
_R

SRCA

NUM
_R

DST

IS
_D

ECIS
IO

N
LE

FT

RIG
HT

SIZ
E

pe
rc

en
ta

ge
 o

f f
au

lt
ch

ec
ks

 p
er

 fa
ul

t

CONFBR

TAC

CC

RNA2

RNA1

ITR

 (a) (b)
Figure 8. Decode stage: (a) Distribution of fault outcomes. (b) Distribution of fault checks.

0%

20%

40%

60%

80%

100%

REN_M
AP_T

ABLE

ARCH_M
AP_T

ABLE

SHADOW
_M

AP_T
ABLE

FREE_L
IS

T

FREE_L
IS

T_T
AIL

CHKPT

REN_M
AP_D

EST_IN
DEX

REN_M
AP_S

RC_I
NDEX

REN_M
AP_O

LD
_D

EST_I
NDEX

DEST_P
HYS_R

EG

SRC_P
HYS_R

EG

OLD
_D

EST_P
HYS_R

EG

pe
rc

en
ta

ge
 o

f r
en

am
e

fa
ul

ts

USDC
UWDOG
UMASK
USDCWDOG
UCFD
AWDOG
AMASK
ASDC
ACFD

0%

20%

40%

60%

80%

100%

REN_M
AP_T

ABLE

ARCH_M
AP_T

ABLE

SHADOW
_M

AP_T
ABLE

FREE_L
IS

T

FREE_L
IS

T_T
AIL

CHKPT

REN_M
AP_D

EST_I
NDEX

REN_M
AP_S

RC_I
NDEX

REN_M
AP_O

LD
_D

EST_I
NDEX

DEST_P
HYS_R

EG

SRC_P
HYS_R

EG

OLD
_D

EST_P
HYS_R

EG

pe
rc

en
ta

ge
 o

f f
au

lt
ch

ec
ks

 p
er

 fa
ul

t

CONFBR

TAC

CC

RNA2

RNA1

 (a) (b)
Figure 9. Rename stage: (a) Distribution of fault outcomes. (b) Distribution of fault checks.

6. Related work
Other low-cost, high-coverage solutions for

contemporary superscalar processors include ReStore
[9] and Dynamic Dataflow Verification (DDFV) [12].
ReStore exploits atypical behavior (exceptions,
confident mispredictions, etc.) as possible symptoms of
faults. DDFV uses dataflow signatures to confirm that
producers and consumers communicate correctly,
exhaustively and implicitly detecting any missteps that
can occur in the complex machinery that performs this
communication, including rename, issue, register read,

and bypass. This rigor comes at the cost of passing and
storing signatures everywhere that operands exist in the
datapath, and incurs static and dynamic instruction
overheads for conveying signatures to the hardware.
Moreover, dataflow checking is limited to within
blocks for which the dataflow is statically known (not
influenced by branches). Argus [11] combines DDFV
with control-flow and computation checking in a very
simple core, for comprehensive coverage with very low
overhead, as such simple cores offer too few resources
for time or space redundancy.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 9 DSN 2008: Reddy & Rotenberg

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ROB_WRITE RS_WRITE LSQ_WRITE

pe
rc

en
ta

ge
 o

f d
is

pa
tc

h
fa

ul
ts

USDC
UWDOG
UMASK
USDCWDOG
AWDOG
ASDC
ACFD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ROB_WRITE RS_WRITE LSQ_WRITE

pe
rc

en
ta

ge
 fa

ul
t c

he
ck

s
pe

r
fa

ul
t

CONFBR

TAC

CC

RNA2

SPC

ITR

 (a) (b)

Figure 10. Dispatch stage: (a) Distribution of fault outcomes. (b) Distribution of fault checks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

READY_B
IT

SPEC_L
OAD

W
AKEUP_T

AG

ROB_I
D

LS
Q_T

AG

SRCA_V
ALU

E

SRC_V
ALU

E

DST_V
ALU

E

DCACHE_V
ALU

E

COM
PLE

TE_B
IT

pe
rc

en
ta

ge
 o

f b
ac

ke
nd

 fa
ul

ts

USDC
UWDOG
UMASK
USDCWDOG
UCFD
AWDOG
AMASK
ASDC
ACFD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

READY_B
IT

SPEC_L
OAD

W
AKEUP_T

AG

ROB_I
D

LS
Q_T

AG

SRCA_V
ALU

E

SRC_V
ALU

E

DST_V
ALU

E

DCACHE_V
ALU

E

COM
PLE

TE_B
IT

pe
rc

en
ta

ge
 o

f f
au

lt
ch

ec
ks

 p
er

 fa
ul

t

CONFBR

TAC

RNA2

 (a) (b)

Figure 11. Backend stages: (a) Distribution of fault outcomes. (b) Distribution of fault checks.

7. Summary and future work
Conventional processor fault tolerance based on

time/space redundancy is robust but prohibitively
expensive for commodity processors. This paper
explored an unconventional approach to designing a
cost-effective fault-tolerant superscalar processor. The
idea is to engage a regimen of microarchitecture-level
fault checks. A few simple checks can detect many
arbitrary faults in large units, by observing
microarchitecture-level behavior and anomalies in this
behavior. We showed for the first time that the
regimen-based approach provides substantial coverage
of an entire superscalar processor. Analysis revealed
vulnerable areas which will be the focus for regimen
additions. For future work, we are developing a
synthesizable verilog superscalar model, which will be
leveraged for weighting fault distributions, prototyping
the regimen, and evaluating its area/power overheads.

Acknowledgments
We thank the anonymous reviewers for their helpful

comments. We also thank Niket Choudhary for early
area estimates and Ahmed Al-Zawawi for valuable
discussions. This research was supported in part by
NSF grants CCF-0429843 and CCF-0702632, and an
Intel grant. Any opinions, findings, and conclusions or

recommendations herein are those of the authors and
do not necessarily reflect the views of the NSF.

References
[1] V. Reddy and E. Rotenberg. Inherent Time Redundancy (ITR):
Using program repetition for low-overhead fault tolerance.
IEEE/IFIP DSN-37, June 2007.
[2] V. Reddy, A. Al-Zawawi, E. Rotenberg. Assertion-based
microarchitecture design for improved fault tolerance. ICCD 2006.
[3] G. Saggese et al. An Experimental Study of Soft Errors in
Microprocessors. IEEE Micro., Nov 2005.
[4] S. S. Mukherjee et al. A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor. IEEE MICRO-36, Dec 2003.
[5] P. Shivakumar et al. Modeling the Effect of Technology Trends
on the Soft Error Rate of Combinational Logic. DSN-32, 2002.
[6] Z. Kalbarczyk et al. Hierarchical simulation approach to accurate
fault modeling for system dependability evaluation. IEEE
Transactions on Software Engineering, Sep/Oct 1999.
[7] V. Reddy. Exploiting Microarchitecture Insights for Efficient
Fault Tolerance. PhD thesis, ECE Dept., NCSU, July 2007.
[8] K. C. Yeager. The MIPS R10000 superscalar processor. IEEE
Micro, April 1996.
[9] N. Wang and S. Patel. ReStore: Symptom based soft error
detection in microprocessors. IEEE DSN-35, Jun 2005.
[10] V. Reddy, S. Parthasarathy and E. Rotenberg. Understanding
prediction-based partial redundant threading for low-overhead, high-
Coverage fault tolerance. ACM ASPLOS-12, Oct 2006.
[11] A. Meixner, M. Bauer, D. Sorin. Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores. MICRO-40, 2007.
[12] A. Meixner and D. Sorin. Error Detection Using Dynamic
Dataflow Verification. PACT-16, Sep. 2007.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 10 DSN 2008: Reddy & Rotenberg

	Return to DSN 2008 Main Menu
	DCCS Sessions

