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Thereby, a few simple checks can detect many arbitrary
faults in large units.

Conventional processor fault tolerance based on  In prior work, we separately proposed checks for
time/space redundancy is robust but prohibitively covering the fetch and decode stages [1], the rename
expensive for commodity processors. This paperstage, and the issue stage of a contemporary
explores an unconventional approach to designing a Superscalar processor [2]. While each piece hinted at
cost-effective fault-tolerant superscalar processor. The the possibility of a complete regimen — for an overall
idea is to engage a regimen of microarchitecture-level fault-tolerant superscalar processor — this totality was
fault checks. A few simple microarchitecture-level fault Not explored or evaluated. This paper provides the
checks can detect many arbitrary faults in large units, culmination by building a full regimen into a
by observing microarchitecture-level behavior and Superscalar processor, and thoroughly evaluating the
anomalies in this behavior. Previously, we separately coverage offered by a regimen-based approach through

Abstract

proposed checks for the fetch and decode stageseXtensive fault-injection experiments.

rename stage, and issue stage of a contemporary
superscalar processor. While each piece hinted at the®
possibility of a complete regimen — for an overall fault-
tolerant superscalar processor — this totality was not
explored. This paper provides the culmination by
building a full regimen into a superscalar processor.
We show for the first time that the regimen-based *
approach provides substantial coverage of an entire
superscalar processor. Analysis reveals vulnerable
areas which should be the focus for regimen additions.

1. Introduction

Conventional approaches to processor fault
tolerance use space or time redundancy, providing
robust fault tolerance but incurring high costs (in terms
of performance, area, and power). Explicit redundancy «
is suitable for high-end computing systems, but may
not be viable in commodity systems. These systems
demand a more cost-effective fault tolerance solution,
that provides less coverage than explicit duplication but
substantial coverage nonetheless.

This paper explores a new, unconventional approach
to designing a cost-effective fault-tolerant superscalar
processor. The idea is to engage a regimen of
microarchitecture-level fault checks. A
microarchitecture-level fault check indirectly and
broadly detects low-level transient faults, by observing
the microarchitecture-level anomalies they cause.
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This paper makes the following key contributions:
We describe an overall microarchitecture-level fault
check regimen. The regimen is a composition of our
previous separate microarchitecture-level fault
checks [1,2], key improvements to these checks,
and some new checks.

We develop a high-level fault injection strategy for
use with cycle-accurate simulators. All pipeline
stages of a contemporary superscalar processor are
analyzed to understand how faults are ultimately
manifested. This analysis is used to enumerate a list
of faults to inject in the cycle-accurate simulator.
The enumerated faults achieve high fault modeling
coverage of the pipeline, without resorting to RTL
or gate-level fault injection.

We demonstrate for the first time that a
microarchitecture-level fault check regimen can
provide substantial coverage of an overall
superscalar processor pipeline. Extensive fault
injection experiments show that the regimen detects
83% of non-masked faults, on average. This
confirmation could only be obtained by assembling
a full regimen and injecting a broad spectrum of
fault types throughout the pipeline, whereas our
precursor work used rather localized and targeted
fault injection. For example, our holistic study
exposes cases where faults are detected by checks
in ways that were not anticipated or intended.
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» We present detailed breakdowns of fault outcomesthe architectural map table at the commit stage, RNA1
and fault checks, (i) across all pipestages, (ii) per can detect faults in several rename structures: the
pipestage, and (iii) per fault type within pipestages. rename map table, architectural map table, shadow map
These results provide insight into which faults are tables (branch checkpoints), and the previous and
chief culprits for which fault outcomes, and which current mapping fields of the ROB. However, RNA1
fault checks detect them. The results also identify cannot detect faults in which an erroneous mapping
remaining vulnerable areas of the regimen, for appears consistent among all the structures. Faults in
guiding regimen additions. the free list and the destination renaming logic (which

. assigns new mappings from the free list) fall into this

2. Fault check regimen class. Nor can RNALl detect faults in instructions’
This section describes the checks that make up thedestination register mappings after the dispatch stage,

fault check regimen used in this paper. as these mappings fall outside the scope of the overall

2.1. Inherent Time Redundancy (ITR) renaming logic.

Inherent time redundancy (ITR) exploits program RNA2 aims to detect such faults using the insight
repetition to detect faults in decode signals [1]. Decode that they cause invalid register conflicts between
signals of instruction traces are combined into instructions. Basically, an erroneously mapped physical
signatures and stored in an ITR cache. When anregister might already be in use by another active
instruction trace repeats, its signature is re-created andnstruction, committed to architectural state, or still
checked with the ITR cache for a match. Misses do notavailable in the free list. Asserting the state of a
directly lead to loss in fault detection coverage, physical register at the register writeback stage
because faults in instruction traces that miss can be(confirming that it is not already ready and not in the
detected by future hits to their signatures. In the free list) exposes conflicts, hence, detects these faults.
previous study [1], we showed that an ITR cache can2.3. Timestamp-based Assertion Check (TAC)
effectively detect faults in the fetch and decode stages Timestamp-based Assertion Checking (TAC) [2]
of the pipeline. exploits the insight that an instruction should execute

In this paper, we make ITR more effective by only after all of its producers have executed. This
moving the ITR cache to the retirement stage. Thisinvariant is true even in an out-of-order superscalar
extends fault coverage to decode signals across albrocessor, where instructions that do not depend on
pipeline stages, in addition to protecting the fetch andeach other issue in parallel or out-of-order. To confirm
decode units. The pipeline is modified such that, whentime-orderliness within a data dependence chain, TAC
certain decode bits are used for the last time andassigns timestamps to instructions when they issue, and
discarded, they update a signature which flows with thecompares timestamps in the retirement stage to assert
instruction. When instructions drain from the pipeline, that instructions issued only after their producers. The
their signatures are written into the reorder buffer out-of-order scheduler is comprised of complex
(ROB). Finally, at retirement, the ITR cache is hardware structures for waking up and selecting ready
accessed to compare instruction trace signatures foiinstructions for issuing. Transient faults in these
faults. structures or any associated logic can cause instructions
2.2. Register Name Authentication (RNA) to issue prematurely. TAC detects all of these faults

Register Name Authentication (RNA) [2] exploits with one simple assertion check.
redundancy among renaming structures used in out-of-2.4. Sequential PC Check (SPC)
order superscalar processors, to detect faults in the With the SPC check [1], the idea is to maintain a
destination register mappings of instructions. RNA retirement program counter (PC) and assert that a
includes two checks, the previous mapping check committing instruction’s PC matches the retirement PC.
(referred to as RNA1) and the writeback state checkThe retirement PC is updated as follows. Non-branch
(RNA2). RNAL is based on the insight that, when an instructions add their length (which can be recorded at
instruction’s logical destination register is renamed, the decode for variable-length ISAs) to the retirement PC
previous physical register mapping in the rename mapand branches update the retirement PC with their
table corresponds to the previous producer of thatcalculated PC. Comparing a committing instruction’s
logical destination register, and the same previousPC with the retirement PC will detect a discontinuity
physical register mapping should be in the architecturalbetween two otherwise sequential instructions. The
map table when the instruction commits. By comparing SPC check can detect faults that affect sequential
the previous physical register mapping recorded at thecontrol-flow, for example, faults on the PC or a ROB
register rename stage to the corresponding mapping in
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bookkeeping fault that might cause some valid Mispredictions among confidently-predicted branches
instructions in the ROB to be overwritten. are considered symptoms of transient faults. Upon
2.5. Register Consumer Counter (CC) detecting the misprediction of a confidently-predicted
Source register mappings originate in the sourcebranch, the pipeline is flushed and restarted from the
rename logic and the rename map table (of which theinstruction at the head of the ROB. The ConfBr check
shadow map tables are an extension), and propagatédetects some faults affecting uncommitted (speculative)
with the instruction after renaming. values that directly or indirectly feed into a branch.
The consumer counter (CC) check — newly 2.7.BTB Verify (BTBV)
proposed in this paper — aims to detect faults in source The BTB Verify (BTBV) check, newly proposed in
mappingsafter renaming. The CC check detects such this paper, exploits inherent redundancy between the
faults by maintaining a counter per physical register, fetch and decode stages.
which indicates the number of unissued consumers of The BTB (branch target buffer) in the fetch stage is
the physical register, and asserting that the consumewused to identify branches and provide their taken target
counter is non-zero when the register is read. Theaddresses, earlier than the decode stage (for fast next-
counter is incremented in the rename stage, whenPC prediction). If there is a BTB miss, the branch is
source mappings are initially determined. In the decoded one or a few cycles later in the decode stage,
register read stage, it is asserted that the consumeproviding the same information, only late.
counter of a register being read is non-zero, following  We leverage the inherent redundancy between the
which, the counter is decremented. Squashing abranch information generated by a BTB hit and the
consumer, like issuing a consumer, causes its sourcédranch information generated a cycle later in the
registers’ counters to be decremented as well. decode stage. They should be consistent. If not, there is
If a source mapping in the rename map table (or aa fault in either the BTB logic or the decode logic.
shadow map table) is modified by a transient fault, the .
now faulty source mapping will be detected by RNA1, 3. Evaluating coverage
albeit after a consumer of the faulty mapping commits. 3.1. Fault injection strategy
Specifically, when the next producer of the same A particle can flip a bit stored in a latch, flip-flop, or
logical register commits, its recorded previous mapping SRAM cell, or cause a transient pulse in a net that
will differ from the corresponding mapping in the might lead to incorrect outputs from combinational
architectural map table. logic blocks which in turn may get latched. Directly
Neither the CC check nor RNA1 check can detect modeling these low-level faults requires a gate-level
faults in the source rename logic, however. In this case,mplementation of the processor. Although this method
the wrong counter is incremented and decrementedis highly accurate, it has several drawbacks. First, a
consistently (CC) and the previous mapping recordedgate-level model may not be available early in the
by the next producer is correct (RNA1). Such faults can design. Second, fault simulation at the gate level is very
be detected by re-renaming instructions in the time consuming. Compounding this problem is the
retirement stage, using the architectural map table,need for long observation windows following injection
which should yield the same source mappings as theof a fault, to determine if the fault is eventually
rename stage unless there was a fault in either thedetected by microarchitecture-level checks. Third,
source renaming logic or the source re-renaming logic.faults injected at the gate level are often masked at the
The extra cost of re-renaming is moderate consideringlogic level or architectural level [3,4,5]. While inherent
that it can be embedded in the cost of the TAC check,fault masking should be part of an accurate reliability
which reads timestamps of logical source registers fromestimate, it is not useful in evaluating the effectiveness
the architectural map table. We did not include re- of a fault-checking regimen.
renaming in the regimen, however. It is left for future Therefore, it is desirable to have a reasonably
work. accurate fault injection strategy that can be used with a
Finally, note that some source mapping faults are C/C++ cycle-accurate microarchitecture simulator,
ultimately detected by TAC (if the source mapping which we refer to as a timing simulator throughout. The
links a consumer to a wrong producer that executeschallenge in using a timing simulator for fault injection
before the right producer) or the watchdog timer (if the is ensuring that the modeled faults comprehensively
source mapping causes the consumer to never issue). cover low level faults. We take a new approach to
2.6. Confident Branch Misprediction (ConfBr) ensure high fault modeling coverage. The idea is to
Confidently-predicted branches have been shown tocharacterize the high level effects of low level faults in
be useful for detecting transient faults [9,10]. each pipeline stage, and aggregate many low level
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faults into fewer high level fault manifestations that can 3.2.1. Example: fault analysis of fetch & decode.
be modeled in a timing simulator. Due to limited space, we only describe fault analysis of
In hierarchical simulation [6], the effects of low the fetch and decode stages of the pipeline, as an
level faults are propagated to higher levels of example. For comprehensive analysis of all stages, the
abstraction using fault dictionaries. Essentially, our reader is referred to the corresponding Ph.D. thesis [7].
novel contribution is a fault dictionary for use in a Figure 2 is a detailed illustration of the fetch and
timing simulator of a superscalar pipeline, derived from decode stages of a 2-way superscalar pipeline. There
a manual and comprehensive analysis of the pipeline. are three fetch stages, FetchO, Fetchl and Fetch2. In
Section 3.2 presents fault analysis of a detailed 2-FetchO, the instruction cache unit is accessed using the
way superscalar pipeline model. Each pipeline stage isprogram counter (PC). The instruction cache unit
thoroughly analyzed to aggregate faults into (ICU) is comprised of the instruction translation
manifestations which can be modeled in a timing lookaside buffer (I-TLB), instruction cache, and
simulator. The outcome of this exercise is a instruction alignment logic. The outputs of the ICU are
comprehensive list of high level faults in each pipeline a maximum of two instructions, the fetch bandwidth of
stage. the example processor. In some cases, the output could
3.2. Fault analysis of a superscalar pipeline be only one or no instructions. To signify the scenario,
A typical superscalar processor pipeline is instructions are marked with valid bits (v1 and v2). In
comprised of several stages that process instructions irparallel with accessing the ICU, the PC is also fed to
parallel, as depicted in Figure 1 (a) and (b). The the Next PC Prediction Unit for predicting the PC for
instruction fetch (IF) stage predicts branches andthe next cycle. The prediction is based on inputs from a
fetches instructions from the instruction cache. The branch target buffer (BTB), conditional branch
instruction decode stage (ID) generates decode signalgredictor, and return address stack (these are not
for processing the instruction. The rename stage (REN)explicitly shown in the figure). The predicted next PC
eliminates output and anti-dependencies in the staticis fed back as a candidate PC for the next cycle.
program representation. The dispatch stage (DISP) The Fetchl stage checks misfetches due to wrong
inserts instructions into the reservation stations (i.e., thebranch information from the Next PC Prediction Unit.
issue queue) and the reorder buffer, and also thelnputs to Fetchl are the instruction packet from the
load/store queues, in the case of memory instructionsFetchO stage, BTB information that was assumed by
The issue stage (IS) dynamically schedules instructionsthe Next PC Prediction Unit to predict the next PC (in
for execution based on data availability and issue the case of a BTB miss, the Next PC Prediction Unit
bandwidth. After being issued, instructions read sourceassumes that the fetched packet contains no branches),
values from the register file in the register read stageand the predicted next PC itself. The fetched packet is
(RR) and begin executing in the execution stage (EX).decoded to extract branch information, which is then
Loads and stores go through the address generatiogompared with the BTB information used by the Next
(AGEN) stage instead of the EX stage, followed by PC Prediction Unit. On detecting an inconsistency, the
disambiguation (store-load dependence checking),FetchO stage is redirected to the override PC, and
store-to-load forwarding, and data cache access (M).instructions in the FetchO stage are flushed. The Next
After execution or data cache access, instructions writePC Prediction Unit is also updated with correct
their results into the register file and bypass them toinformation (not shown in the figure).
dependent instructions in the writeback stage (WB). In the Fetch2 stage, the fetched instructions are
Instructions are finally retired in original program order entered into a fetch queue. The fetch queue decouples
from the reorder buffer in the retirement stage (RE).  the decode unit from the fetch unit. The FetchQ
| F [ b [REN[DISP| I1s | RR [ EX | WB | RE | Allocator tracks the number of entries in the fetch
queue, and if space is available, enters the new

@) instructions at the tail of the queue (tail and tail+1)
[ F [ o [REN[DISP[ 1S [ RR [AGEN| M [ wB [ RE | que ' .
) The FetchQ Deallocator reads instructions from the

. - head of the fetch queue (head and head+1) and
Figure 1. Superscalar processor pipeline for (a) non- .
memory and (b) memory insiructions. provides them to the Decc_)de stage.
For fault analysis, each pipeline stage is examined to N the Decode stage, instructions are fully decoded
see how low level faults in that stage would manifest. [0 €stablish signals that govern the processing of the

The goal is to aggregate as many faults into as few/NStructions in later pipeline stages.
manifestations as possible, without losing fault In Figure 2, the numbered circles indicate the fault
modeling coverage of the pipeline. manifestations modeled in the fetch and decode stages.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0] (5) corresponds to the fetch queue. Many faults in
the fetch queue manifest as reading and writing wrong
o M Youro e entries. This includes faults in allocation and de-
- St sage) allocation of entries, bookkeeping, and stall signals.
P ﬁ This manifestation is modeled by flipping a bit in the
YY vy v fetch queue head or tail pointers.
,,,,,,,,,, Fetchd - et [v1 [ sz [v2] [ o100 ]

(6) corresponds to decode signals. Many faults in
# the fetch and decode stages manifest as the production
Brah Decode | of wrong decode signals. These include faults in the
e erfaten registers holding instructions, the decode logic, and the
Decode stage’s output registers. These are modeled by
flipping an arbitrary bit in one of the many decode
signals, shown in Table 1.

3.2.2. Fault analysis of all pipeline stages. Similar
analysis was performed for all pipeline stages [7], and
the resulting list of fault manifestations is shown in
Table 1.

4. Methodology
The faults identified in Section 3.2 are modeled in a

stall - fetch queue full

B
FetchQ Deallocator

becoderd | | Decodert timing simulator. The simulator models a
microarchitecture similar to the MIPS R10000 [8] and

,,,,,,,,,, Desode outlined in Section 3.2. Key parameters of the
Figure 2. Fault analysis of the fetch and decode stages. microarchitecture are: 4-way superscalar pipeline with

. 64-entry ROB; 64KB 4-way set-associative L1
.(1) gorresponds_to the PC. Many faults in .the fetch jnstruction and data caches; 1 MB 4-way set-
unit ultimately manifest as a faulty PC. This includes yqqqiative unified L2 cache with 10-cycle hit time and

faults in the Next PC Prediction Unit, selection of a 100-cycle miss time; %-entry gshare branch predictor
wrong PC due to faulty signals to the PC mux, and it confidence threshold of 64. The ITR cache is

faults in the PC register itself. This manifestation is 16KB (1,024 entries) 2-way set-associative.

modeled in the simulator by flipping a random bit in A subset of the SPEC2K benchmark suite is used

the PC. ] ) for evaluation. For each benchmark, one thousand
(2) corresponds to the instruction stream returned by, its are randomly injected. Fault injection involves

the ICU. Many faults in the ICU manifest as a wrong ranqomly selecting a fault to inject from the list of

instruction stream. This includes faults affecting the I- faults. A separate “golden” (fault-free) simulator is run

cache access, instruction alignment, and branchiy narajiel with the faulty timing simulator. When an

location. This manifestation is modeled by arbitrarily jnstriction is committed to the architectural state in the
masking off instructions from the fetched packet. timing simulator, it is compared with its golden

(3) corresponds to instruction validity. If valid bits counterpart to determine whether or not the

are faulty, bad instructions can appear or good yrchitectural state is being corrupted. Any fault that
instructions can disappear from the pipeline. This is |54 to corruption of architectural state is classified as
similar in spirit to (2), but is modeled by applying it o 4 potential silent data corruption (SDC) fault. Likewise,

only one instruction. , , if no corruption of architectural state is observed for a
(4) corresponds to the Override PC inferred by the gt period of time after a fault is injected (the

branch pre-decode stage (Fetchl) to confirm BTB gpsenation window), it is classified as a masked fault.
predictions made in the FetchO stage. Faults in they, his study, an observation window of one million
branch pre-decode/BTB verification stage manifest aScycles is used. A watchdog timer (shown as WDOG in

an incorrectly inferred Override PC. This includes e regyits) is included in the experiments to check for
faults that cause false detection of a branch, yeadiocks.

overlooking of a branch, an incorrect branch positionin 5, injected fault leads to one of many possible

the instruction packet, or an incorrect branch target g 1comes, based on the combination of (1) the effect of

address. This manifestation is modeled by flipping a e tayit on the application, and (2) whether or not the

random bit in the inferred Override PC. fault is detected by the fault check regimen and how.
Figure 3 shows the possible fault outcomes as a chart.
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Table 1. Table of faultsfor all pipeline stages.

Pipe Stage Fault Description
Fetch FETCH PC Flip a random bit in the program counter
Fetch WRONG_INSTR Remove an arbitrary number of fetched instructions
Fetch NEXT_PC Flip a random bit in the override PC from the branch pre-decode/BTB verification stage
Fetch INSTR_DISAPP Mask a randomly selected instruction from fetched instructions
Fetch FETCHQ Flip a randomly selected bit in the tail/nead pointer of the fetch queue
Decode OPCODE Flip a random bit in an instruction's opcode
Decode FLAGS Flip a random bit in an instruction's decode flags
Decode SHAMT Flip a random bit in an instruction's logical/arithmetic shift quantity
Decode SRC_LOG_REG Flip a random bit in an instruction's logical source register specifier
Decode SRCA_LOG_REG Flip a random bit in an instruction's logical address source register specifier
Decode RDST LOG_REG Flip a random bit in an instruction's logical destination register specifier
Decode LAT Flip a random bit in an instruction's latency
Decode IMM Flip a random bit in an instruction's signed immediate value field
Decode UIMM Flip a random bit in an instruction's unsigned immediate value field
Decode TARG Flip a random bit in an instruction's branch target address
Decode NUM_RSRC Flip a random bit in an instruction's source operand count
Decode NUM_RSRCA Flip a random bit in an instruction's source operand count, address operand
Decode NUM_RDST Flip a random bit in an instruction's destination operand count
Decode IS_DECISION Flip the bit which indicates whether an instruction is a control-flow decision instruction
Decode LEFT Flip the bit indicating left shift of data (LWL/SWLinstructions)
Decode RIGHT Flip the bit indicating right shift of data LWR/SWR instructions)
Decode SIZE Flip a random bit indicating the size of data (load/store instructions)
Rename REN_MAP_TABLE Flip a random bit of a random mapping in the rename map table
Rename ARCH_MAP_TABLE Flip a random bit of a random mapping in the architecture map table
Rename SHADOW_MAP_TABLE Flip a random bit of a random mapping in a shadow map table
Rename FREE_LIST Flip a random bit of an entry in the physical register free list
Rename FREE_LIST TAIL Flip a random bit of the physical register free list's tail pointer
Rename CHKPT Randomly pick a shadow map table and flip its availability (used-->free)
Rename REN_MAP_DEST_INDEX Flip a random bit in the index used to write @ new mapping to the rename map table
Rename REN_MAP_SRC_INDEX Flip a random bit in the index used to read a source mapping from the rename map table
Rename REN_MAP_OLD_DEST_INDEX |Flip a random bit in the index used to read the old register mapping from the rename map table
Rename DEST_PHYS _REG Flip a random bit in the destination physical register mapping carried by an instruction
Rename SRC_PHYS REG Flip a random bit in the source physical register mapping carried by an instruction
Rename OLD_DEST_PHYS_REG Flip a random bit in the old destination physical register mapping carried by an instruction
Dispatch ROB_WRITE Flip a random bit in the tail pointer to the reorder buffer causing a write to a wrong entry
Dispatch RS WRITE Overwrite a randomly selected (occupied) entry in the reservation station (RS)
Dispatch LSQ_WRITE Flip a random bit in the tail pointer to the Load Store Queue (LSQ) causing a write to a wrong entry
Backend READY_BIT Flip the ready bit of a random physical register from 0 to 1, causing its dependents to execute prematurely
Flip a cancel signal sent by a speculatively issued load that misses in the data cache, causing dependents to
Backend SPEC_LOAD execute with wrong data
Backend |WAKEUP_TAG Flip a random bit in a physical register tag that is broadcasted to wakeup dependent instructions
Backend ROB_ID Flip a random bit in the ROB index stored with an instruction, causing it to index a wrong ROB entry
Backend LSQ _TAG Flip a random bit in the LSQ index stored with an instruction, causing it to index a wrong LSQ entry
Backend SRCA _VALUE Flip a random bit in an instruction's effective address (load/store instr.)
Backend SRC_VALUE Flip a random bit in an instruction's source value
Backend DST_VALUE Flip a random bit in an instruction's computed destination value
Backend DCACHE_VALUE Flip a random bit in a load/store instruction's value (going to or coming from the data cache)
Backend COMPLETE_BIT Flip an instruction's completion status in the ROB to true before it completes

A fault is shown in a black box, its effects on an o ASDC: The fault caused a silent data corruption, and
application in grey boxes, and the final outcomes in was detected by the fault-checking regimen.

white boxes. The possible effects of a fault on an o USDC: The fault caused a silent data corruption, and
application are, 1) control-flow deviation (CFD), 2)  was not detected by the fault-checking regimen.
silent data corruption (SDC), 3) application deadlock o AWDOG: The fault caused a deadlock, but was
(Deadlock/WDOG), and 4) masking of the fault detected by the fault-checking regimen before the
(Mask), i.e., it does not have any of the previous watchdog timeout occurred.

effects. If an injected fault is detected, the fault o UWDOG: The fault caused a deadlock, and was not
outcome is indicated by prefixing the effect of the fault detected by the fault-checking regimen before the
with the letter ‘A’, signifying an assertion. If an watchdog timeout occurred.

injected fault is undetected, the fault outcome is o USDCWDOG: The fault caused a silent data
indicated by prefixing the effect of the fault with the  corruption and then a deadlock, and was not detected
letter ‘U’. Based on this, the list of possible fault by the fault-checking regimen.

injection outcomes are (also shown in Figure 3): o AMASK: The fault was architecturally masked, and
o ACFD: The fault caused a control-flow deviation, yet was detected by the fault-checking regimen.
and was detected by the fault-checking regimen. o UMASK: The fault was architecturally masked, and

o UCFD: The fault caused a control-flow deviation, = was not detected by the fault checking regimen.
and was not detected by the fault-checking regimen.
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Fault

5.2. Distribution of fault outcomes
Figure 5 shows the overall fault outcome
distribution. The distribution pattern across all

(WDOG)

[acro ] [ucro | [asoc | [usoc | [uspowpos | [awpos |[uwbos ] [mesi ] benchmarks is fairly uniform, and discussion is focused
Figure 3. Classification chart for fault injection outcomes. on average results. The average breakdown of fault
outcomes is as follows: those detected by the regimen
5. Results is 60%, those not detected by the regimen but detected
5.1. Distribution of injected faults by the watchdog timer is 9%, and those undetected is

Figure 4 shows the distribution of injected faults 31%. Several interesting conclusions can be drawn
across all pipeline stages. Across benchmarks, the faulffrom the results. Around 40% of faults (sum of all
distribution is fairly uniform. On average, the CFD, SDC, and WDOG causing faults) cause harm to
percentage of faults injected in each stage are: fetch the application being run, either by corrupting the
9%, decode — 39%, rename — 24%, dispatch — 7%, andrchitectural state, committing wrong-path instructions,
backend stages — 21%. Note that the ‘decode’ categoryP! causing a deadlock. This fairly large percentage is
in Figure 4 includes faults injected in all pipeline stages motivation to protect processors from transient faults.
where decode bits are used, not just the decode stagmong all faults detected by the fault-checking

itself (this is not reflected in Table 1). regimen (ACFD + ASDC + AWDOG + AMASK), the
100% 1 s o . S part that causes harmful effects is 24% (ACFD +
3 0% | % B R % % L ASDC + AWDOG). So, with the fault-checking
£ 50w §= = = =|||=§=- =}}\| i regimen in place, the processor is vulnerable to only 40
2 70% I--. .m. — .Ill.g. - — 24 = 16% of faults, a 60% reduction in vulnerability.
:;:; 60% u .E.g. .E. .g = If a watchdog timer is included in the processor, then
E 50% T ‘.ﬁ.§.§.‘\*-§.ﬁ é‘é; o an additional 9% of faults (those that cause deadlocks)
:{3‘23‘ \l .§.%.%.§.§.§ D Dispatch can be detected through timeouts (UWDOG +
5 oo | %. .%.%.%.§\.%.% o Rename USDCWDOG). This further reduces vulnerability to
2 Low '&. .},“.&.&.&.&.& g Fetch harmful faults from 16% to 7%. The overall reduction
o || B EARENER in vulnerability to harmful faults by combining the
A S @ 8w fault-checking regimen with the watchdog timer is 40%
< = to 7%, an 83% reduction. This is a substantial result for
Figure 4. Distribution of injected faults. considering a regimen-based approach to processor

Because every fault has the same random chance Of'ault tolerance.

being injected, faults are distributed in proportion to 100% 1
the number of faults modeled in each stage. A pipeline ]
stage that models more faults has a larger fraction of 0% -
faults injected in it. We are currently developing a 60% 1L

synthesizable verilog model of the superscalar pipeline 50% -
to assign non-uniform weights to faults, weighting each 40%
pipeline stage based on its total area, its total flip-flop 30% 1
count, or combinations of these. With a TSMC 180nm
technology, using areas for weights yields an average
fault distribution as follows: fetch — 47% (includes
BTB but not I-cache), decode — 22%, rename — 8%,
dispatch — 1%, backend — 22%. This area-weighted
fault distribution yields similar results to the
distribution above. Most of the results in this section 5.3. Distributions per pipeline stage

are not sensitive to fault distribution: fault outcomes  To further analyze fault outcomes, the outcome
per fault type and fault checks per fault type are distribution in each pipeline stage is considered, as
influenced by faulttype The distribution of fault ~ shown in Figure 6. This provides a high-level reference
outcomes, which includes coverage of unmasked faultsto analyze fault outcomes, showing the pipeline
by the regimen, is influenced by the distribution of Stage(s) where a given fault outcome tends to occur. It
injected faults, but even in this case the coveragewill be used as the first step in investigating a fault
results hold for the area-weighted distributions (81% outcome, followed by looking at a further breakdown
reduction in vulnerability compared to 83%). of fault outcomes per fault type injected in a pipeline
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Figure5. Distribution of fault outcomes.

1-4244-2398-9/08/$20.00 ©2008 |IEEE 7 DSN 2008: Reddy & Rotenberg



International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

stage, which are shown in Figure 7 through Figure 115.3.2. SDC outcomes. Next, we explore outcomes that
(left side, marked as (a)). To provide more insight into lead to silent data corruption (*SDC). As seen in Figure
fault detection, a breakdown of fault checks per fault 6, the majority of USDC instances occur in the rename
type in a pipeline stage is shown in Figure 7 through and backend stages. For insight we refer to their
Figure 11 (right side, marked as (b)). respective breakdowns per fault type in Figure 9(a) (for
rename) and Figure 11(a) (for backend). In the rename
stage, USDC instances dominantly occur due to the
REN_MAP_SRC_INDEX fault type. The anomaly
modeled here is a fault while indexing into the rename
map table, which is highly likely to cause an instruction
to produce a wrong value (due to renaming to an
incorrect source register) and cause a SDC. There is no
specific fault check in the regimen that is targeted to
detect it (the consumer counter check only applies to
reading from wrong source registers after correctly
renaming). Partial coverage is provided by TAC, which
Fetch  Decode  Rename  Dispatch Backend can detect faults if the fault-afflicted instruction issues
before its actual producer, indicated by its non-faulty
logical source registers. But a large fraction of the
5.3.1. CFD outcomes. As seen in Figure 6, fault faults are undetected and end up causing an SDC.
outcomes that cause control-flow deviation (*CFD) Referring to Figure 11(a), USDC instances in the
mainly occur in the fetch and dispatch stages, with backend often occur due to faults that directly or
minor incidences in the decode, rename and backendndirectly affect an output value (e.g., SRC_VALUE,
stages. For insight, we refer to the fault outcome DST_VALUE, etc.). Such faults are very likely to
breakdown per fault type in the various pipeline stages.corrupt an output value that can influence the
Looking at Figure 7(a) (for fetch), we see that four architectural state, hence, cause SDC. The regimen
among the five fault types (FETCH_PC, does not provide comprehensive coverage to values
WRONG_INSTR, INSTR_DISAPP, and FETCHQ) through any of the fault checks. Partial coverage is
are capable of causing invalid breaks in control-flow. provided by misprediction detection among confident
As expected, instances of these four fault types are thehyranches. But the number of confident branches is
main contributors to causing a control-flow deviation |imited, hence, a large number of such faults go
(see ACFD contribution). All instances of the predicted undetected (e.g., all SRC_VALUE faults are
next PC fault (NEXT_PC) get detected early in the undetected) and end up causing SDC.

pipeline by the BTBV check. Looking at Figure 10(a) 53.3. WDOG outcomes. Next, fault outcomes that
(for dispatch), we find that only the ROB_WRITE fault |ead to deadlocks are analyzed (*WDOG). We observe
type contributes to CFD. This is expected, becausefrom Figure 6, that almost all deadlocks are detected by
writing to wrong ROB entries, breaks control-flow. the watchdog timer (UWDOG and USDCWDOG), and
Notice from the fault check distributions in Figure 7(b) only a small fraction is detected first by regimen-based
(for fetch) and Figure 10(b) (for dispatch), no instance checks (AWDOG). This underscores the advantage of
of CFD-causing faults are undetected. Moreover, theincluding a watchdog timer in a processor. From Figure
majority of them are detected through the SPC check,6, deadlocks are mostly caused by faults in the dispatch
and some, through the ITR check. A small number of stage. For insight, we look at the per fault type
CFDs are also caused by faults injected in the decodepreakdown for the dispatch stage in Figure 10(a). As
rename and backend stages. Referring to the respectivgeen there, deadlocks are caused by all the fault types.
fault outcome breakdowns of these pipeline stagesThis is expected. The ROB_WRITE and RS_WRITE
(Figure 8(a) for decode, Figure 9(a) for rename, andfaults result in writing instructions to wrong locations
Figure 11(a) for backend) reveals that these instancesn the ROB and reservation stations, respectively. If
of CFD are caused by faults leading to incorrect branchinstructions wrongly overwrite other instructions, their
computation (e.g., SRC_LOG_REG, IMM etc. in dependents end up waiting endlessly for results. Some
decode, REN_MAP_TABLE etc. in rename, and faults in the backend also contribute noticeably to
READY_BIT, SPEC_LOAD, etc. in the backend). deadlocks, mainly faults impacting the wakeup
Most of the faults are aptly detected (see ACFD) by mechanism (WAKEUP_TAG, LSQ_TAG, etc., as
ITR in decode, RNA in rename, and TAC in backend, shown in Figure 11(a)).

and a very small fraction goes undetected (see UCFD).
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i
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Figure 6. Distribution of fault outcomes per pipe stage.
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Figure 8. Decode stage: (a) Distribution of fault outcomes. (b) Distribution of fault checks.
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Figure 9. Rename stage: (a) Distribution of fault outcomes. (b) Distribution of fault checks.

6. Related work and bypass. This rigor comes at the cost of passing and

Other low-cost, high-coverage solutions for Storing signatures everywhere that operands exist in the
contemporary superscalar processors include ReStorélatapath, and incurs static and dynamic instruction
[9] and Dynamic Dataflow Verification (DDFV) [12]. Overheads for conveying signatures to the hardware.
ReStore exploits atypical behavior (exceptions, Moreover, dataflow checking is limited to within
confident mispredictions, etc.) as possible symptoms ofblocks for which the dataflow is statically known (not
faults. DDFV uses dataflow signatures to confirm that influenced by branches). Argus [11] combines DDFV
producers and consumers communicate correctly,With control-flow and computation checking in a very
exhaustively and implicitly detecting any missteps that Simple core, for comprehensive coverage with very low
can occur in the complex machinery that performs this Overhead, as such simple cores offer too few resources
communication, including rename, issue, register read,for time or space redundancy.
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Figure 11. Backend stages: (a) Distribution of fault outcomes. (b) Distribution of fault checks.
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