
NC STATE UNIVERSITY

DSN 2007© Vimal Reddy 2007 !1

Inherent Time Redundancy (ITR):  
Using Program Repetition for  

Low-Overhead Fault Tolerance

Vimal Reddy
Eric Rotenberg

Center for Efficient, Secure and Reliable
Computing (CESR)
Dept. of Electrical & Computer Engineering
North Carolina State University
Raleigh, NC

NC STATE UNIVERSITY

DSN 2007© Vimal Reddy 2007 !2

Processor Fault Tolerance

• Main approaches: Time or space redundancy
– Explicitly duplicate in time or space
– Match values/signals
– E.g., AR-SMT (time), IBM S/390 G5 (space)

• High overheads
– Area/power/performance
– Unsuitable for commodity high-performance

processors

NC STATE UNIVERSITY

DSN 2007

New Idea: Inherent Time Redundancy

© Vimal Reddy 2007 !3

==

==

==

==

==

==

==

==

program program duplicate program

Conventional time redundancy Inherent time redundancy

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !4

NC STATE UNIVERSITY

DSN 2007

Exploiting ITR for Fault Tolerance

• Key ideas:
– Record input-independent signals for instructions
– Confirm their correctness upon repetition

• This paper focuses on decode signals
– Provides protection for fetch and decode stages

• Longer term goal
– Apply ITR to other input-independent stages
– My thesis combines ITR with other microarch.-

level checks for a comprehensive fault regimen

© Vimal Reddy 2007 !5

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !6

NC STATE UNIVERSITY

DSN 2007

ITR Cache for Checking Decode Signals

• Create decode signatures at trace granularity
– Trace ends at branch or 16 instructions (arbitrary)
– Combine decode signals of instructions in a trace

• Record decode signatures in an ITR cache
– Indexed by start PC (program counter) of a trace

• For each new trace, compare with ITR cache
– Fault if new signature mismatches ITR cache

© Vimal Reddy 2007 !7

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !8

NC STATE UNIVERSITY

DSN 2007

pc(I)

Scenario 1: ITR Cache Hit

© Vimal Reddy 2007 !9

Signature
GenerationIJK S2 (I, J, K)S2 (I, J, K)

Tags Signatures

S1 (I, J, K)pc(I)

HitI

≠
Fault Detected

Notes:
-- Faults on traces that hit (S2) are detectable
-- These faults are recoverable by flushing the processor pipeline
 and restarting from the faulting trace

ITR Cache

NC STATE UNIVERSITY

DSN 2007

Scenario 2: ITR Cache Miss Followed by Hit

© Vimal Reddy 2007 !10

Signature
GenerationIJK S1 (I, J, K)S1 (I, J, K)

Tags Signatures

S1 (I, J, K)pc(I)

Miss

pc(I)I

ITR Cache

NC STATE UNIVERSITY

DSN 2007

pc(I)

© Vimal Reddy 2007 !11

Signature
GenerationIJK S2 (I, J, K)S2 (I, J, K)

Tags Signatures

S1 (I, J, K)pc(I)

Hit

≠

Scenario 2: ITR Cache Miss Followed by Hit

Fault Detected

Notes:
-- Faults on traces that miss but later hit (faulty S1) are detectable
-- Faults on S1 need checkpoint for recovery or must abort

ITR Cache

NC STATE UNIVERSITY

DSN 2007

Scenario 3: ITR Cache Miss Followed by Eviction

© Vimal Reddy 2007 !12

Signature
GenerationIJK S1 (I, J, K)S1 (I, J, K)

Tags Signatures

S1 (I, J, K)pc(I)

Miss

pc(I)I

ITR Cache

NC STATE UNIVERSITY

DSN 2007

pc(M)

© Vimal Reddy 2007 !13

Signature
GenerationMNO S2 (M, N, O)S2 (M, N, O)

Tags Signatures

Evict

Notes:
-- Faults on missed & evicted traces (S1) are not detected

Scenario 3: ITR Cache Miss Followed by Eviction

S2 (M, N, O)S1 (I, J, K)pc(M)pc(I)

Fault not detected

ITR Cache

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !14

NC STATE UNIVERSITY

DSN 2007

Microarchitecture Extensions to Superscalar

© Vimal Reddy 2007 !15

I$

Next
PC Logic

PC

Decode

Rename

Store
Buffer

Reorder
Buffer
(ROB)

FU FU FU

Memory
Hierarchy

Register
File

Arch.
State

ooo issue

dispatch

commit

load
reg

read

store reg
writeback

Branch
Chkpts

Signature

ITR
ROB

Start PC
Branch or
16 instr.?

ITR
Cache

== checkrecord

Start PC Signature chk miss retry

Decode signals redirected for
signature generation and ITR cache
access

NC STATE UNIVERSITY

DSN 2007

Microarchitecture Extensions to Superscalar

© Vimal Reddy 2007 !16

I$

Next
PC Logic

PC

Decode

Rename

Store
Buffer

Reorder
Buffer
(ROB)

FU FU FU

Memory
Hierarchy

Register
File

Arch.
State

ooo issue

dispatch

commit

load
reg

read

store reg
writeback

Branch
Chkpts

Signature

ITR
ROB

Start PC
Branch or
16 instr.?

ITR
Cache

== checkrecord

Start PC Signature chk miss retry

Signature generation: Bitwise XOR
decode signals of instr. from a trace

NC STATE UNIVERSITY

DSN 2007

Microarchitecture Extensions to Superscalar

© Vimal Reddy 2007 !17

I$

Next
PC Logic

PC

Decode

Rename

Store
Buffer

Reorder
Buffer
(ROB)

FU FU FU

Memory
Hierarchy

Register
File

Arch.
State

ooo issue

dispatch

commit

load
reg

read

store reg
writeback

Branch
Chkpts

Signature

ITR
ROB

Start PC
Branch or
16 instr.?

ITR
Cache

== checkrecord

Start PC Signature chk miss retry

Signatures dispatched into ITR ROB
(ITR cache more effective without wrong-path
trace signatures)

NC STATE UNIVERSITY

DSN 2007

Microarchitecture Extensions to Superscalar

© Vimal Reddy 2007 !18

I$

Next
PC Logic

PC

Decode

Rename

Store
Buffer

Reorder
Buffer
(ROB)

FU FU FU

Memory
Hierarchy

Register
File

Arch.
State

ooo issue

dispatch

commit

load
reg

read

store reg
writeback

Branch
Chkpts

Signature

ITR
ROB

Start PC
Branch or
16 instr.?

ITR
Cache

== checkrecord

Start PC Signature chk miss retry

Access ITR cache with trace start PC

NC STATE UNIVERSITY

DSN 2007

Microarchitecture Extensions to Superscalar

© Vimal Reddy 2007 !19

I$

Next
PC Logic

PC

Decode

Rename

Store
Buffer

Reorder
Buffer
(ROB)

FU FU FU

Memory
Hierarchy

Register
File

Arch.
State

ooo issue

dispatch

commit

load
reg

read

store reg
writeback

Branch
Chkpts

Signature

ITR
ROB

Start PC
Branch or
16 instr.?

ITR
Cache

== checkrecord

Start PC Signature chk miss retry

Signature mismatch, set retry bit
 -- Flush pipeline and retry from faulting trace

NC STATE UNIVERSITY

DSN 2007

Microarchitecture Extensions to Superscalar

© Vimal Reddy 2007 !20

I$

Next
PC Logic

PC

Decode

Rename

Store
Buffer

Reorder
Buffer
(ROB)

FU FU FU

Memory
Hierarchy

Register
File

Arch.
State

ooo issue

dispatch

commit

load
reg

read

store reg
writeback

Branch
Chkpts

Signature

ITR
ROB

Start PC
Branch or
16 instr.?

ITR
Cache

== checkrecord

Start PC Signature chk miss retry

Fault re-detected, old signature is faulty
 -- Abort or rollback to a safe checkpoint

Fault disappears, successful recovery

NC STATE UNIVERSITY

DSN 2007

Microarchitecture Extensions to Superscalar

© Vimal Reddy 2007 !21

I$

Next
PC Logic

PC

Decode

Rename

Store
Buffer

Reorder
Buffer
(ROB)

FU FU FU

Memory
Hierarchy

Register
File

Arch.
State

ooo issue

dispatch

commit

load
reg

read

store reg
writeback

Branch
Chkpts

Signature

ITR
ROB

Start PC
Branch or
16 instr.?

ITR
Cache

== checkrecord

Start PC Signature chk miss retry

ITR cache miss
 -- Write new signature to ITR cache

NC STATE UNIVERSITY

DSN 2007

Microarchitecture Extensions to Superscalar

© Vimal Reddy 2007 !22

I$

Next
PC Logic

PC

Decode

Rename

Store
Buffer

Reorder
Buffer
(ROB)

FU FU FU

Memory
Hierarchy

Register
File

Arch.
State

ooo issue

dispatch

commit

load
reg

read

store reg
writeback

Branch
Chkpts

Signature

ITR
ROB

Start PC
Branch or
16 instr.?

ITR
Cache

== checkrecord

Start PC Signature chk miss retry

No fault detected (or possible loss of
detection due to miss-followed-by-
eviction case)

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !23

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !24

NC STATE UNIVERSITY

DSN 2007

Results: Repetition in SPEC2K INT

© Vimal Reddy 2007 !25

%
 o

f t
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

NC STATE UNIVERSITY

DSN 2007© Vimal Reddy 2007 !26

Results: Repetition in SPEC2K FP
%

 o
f t

ot
al

 d
yn

am
ic

 in
st

ru
ct

io
ns

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500
Number of static traces

applu
apsi
art
equake
mgrid
swim
wupwise

NC STATE UNIVERSITY

DSN 2007© Vimal Reddy 2007 !27

Results: Proximity in SPEC2K INT
%

 o
f t

ot
al

 d
yn

am
ic

 in
st

ru
ct

io
ns

dynamic instructions separating repetitive traces

NC STATE UNIVERSITY

DSN 2007© Vimal Reddy 2007 !28

Results: Proximity in SPEC2K FP

dynamic instructions separating repetitive traces

%
 o

f t
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !29

NC STATE UNIVERSITY

DSN 2007

Fault Coverage Based on ITR Cache Misses
• Loss in fault detection coverage

– Miss-followed-by-eviction causes loss in fault detection
– (# of missed & evicted traces) x instructions/trace

• Loss in fault recovery coverage (w/o checkpoints)
– Misses cause loss in fault recovery
– (# of missed traces) x instructions/trace

• Tried various ITR cache configurations
– Direct-mapped (DM), 2,4,8,16-way, fully-associative (FA)
– 256, 512 and 1024 signatures
– Bzip, gzip, art, mgrid and wupwise had <1% loss in

coverage (results not shown)

© Vimal Reddy 2007 !30

NC STATE UNIVERSITY

DSN 2007

Results: Loss in Fault Detection Coverage

© Vimal Reddy 2007 !31

Coverage loss
correlates with
proximity of
repetition
e.g., perl and
vortex

Capacity is
important for
poor performers

For 2-way, 1024
signatures:
8% max. (vortex)
and 1.3% avg. loss
in detection coverage

%
 o

f t
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

NC STATE UNIVERSITY

DSN 2007

Results: Loss in Fault Recovery Coverage

© Vimal Reddy 2007 !32

Recovery
coverage
loss is bigger
than loss in
detection
coverage

For 2-way, 1024
signatures:
15% max.
(vortex) and
2.5% avg. loss
in recovery coverage

%
 o

f t
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !33

NC STATE UNIVERSITY

DSN 2007

Fault Injection Experiments

© Vimal Reddy 2007 !34

• Injected faults on decode signals of a cycle-
accurate simulator

• Based on MIPS R10K processor
• 1000 random faults per benchmark

NC STATE UNIVERSITY

DSN 2007

Decode Signals Modeled

© Vimal Reddy 2007 !35

 Field Description Width
opcode instruction opcode 8

flags

decoded control flags (is_int, is_fp,
is_signed/unsigned, is_branch, is_uncond,
is_ld, is_st, mem_left/right, is_RR,
is_disp, is_direct, is_trap)

12

shamt shift amount 5
rsrc1 source register operand 5
rsrc2 source register operand 5
rdst destination register operand 5
lat execution latency 2

imm immediate 16
num_rsrc number of source operands 2
num_rdst number of destination operands 1
mem_size size of memory word 3

Total width 64

NC STATE UNIVERSITY

DSN 2007

Fault Injection Outcomes

© Vimal Reddy 2007 !36

Fault

SDC Mask

ITR+SDC

MayITR+SDC

Undet+SDC

ITR+Mask

Undet+Mask

MayITR+Mask

92% 97%

7%

1%

37%

3%

0%

63%

Refer paper for other interesting fault injection results

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !37

NC STATE UNIVERSITY

DSN 2007Vimal Reddy © 2007 !38

Area Overhead
• The IBM S/390 G5

replicates the fetch and
decode units (I-unit)

• ITR cache configuration
similar to BTB in the picture
(2K entries, 2-way assoc.,
35 bits per entry)

• ITR cache is 1/7th the I-unit

*From [slegel-IEEE-Micro-1999]

NC STATE UNIVERSITY

DSN 2007Vimal Reddy © 2007 !39

Power Overhead
• Redundant fetching is a major power overhead
• Compare I-cache of IBM power4 (64KB, dm, 128B line, 1 rd./

wr. port) with ITR cache (16KB, 2-way, 4B line, 1 rd. and 1wr.
port)

• Excluded redundant decoding energy (more savings in reality)

0

10

20

30

40

50

60

70

80

90

100

bz
ip

ga
p

gc
c

gz
ip

pa
rse

r
pe

rl
tw

olf

vo
rte

x
vp

r
ap

plu ap
si ar

t

eq
ua

ke
mgr

id
sw

im

wup
wise

En
er

gy
 (m

J)

ITR cache 1rd/wr
ITR cache 1rd+1wr
I-cache 1rd/wr

NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance
• ITR Cache for Checking Decode Signals
• ITR Cache Hit/Miss Scenarios
• Microarchitecture Extensions to Superscalar
• Results

– Repetition
– Fault Coverage Based on Cache Hits/Misses
– Fault Coverage Based on Fault Injection

• Area and Power Overhead
• Conclusion

© Vimal Reddy 2007 !40

NC STATE UNIVERSITY

DSN 2007

Conclusion

• Inherent Time Redundancy is a new
opportunity for efficient fault tolerance

• 96% of faults on decode signals detected by
small ITR cache (~16 KB)

• Future work:
– Handling benchmarks with less repetition
– Exploiting ITR for other input-independent parts

of the processor
– Evaluating a comprehensive fault regimen that

includes ITR

© Vimal Reddy 2007 !41

