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Processor Fault Tolerance

• Main approaches: Time or space redundancy 
– Explicitly duplicate in time or space 
– Match values/signals 
– E.g., AR-SMT (time), IBM S/390 G5 (space) 

• High overheads 
– Area/power/performance 
– Unsuitable for commodity high-performance 

processors
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New Idea: Inherent Time Redundancy

© Vimal Reddy 2007 !3

==

==

==

==

==

==

==

==

program program duplicate program

Conventional time redundancy Inherent time redundancy



NC STATE UNIVERSITY

DSN 2007

Outline
• Exploiting ITR for Fault Tolerance 
• ITR Cache for Checking Decode Signals 
• ITR Cache Hit/Miss Scenarios 
• Microarchitecture Extensions to Superscalar 
• Results 

– Repetition 
– Fault Coverage Based on Cache Hits/Misses 
– Fault Coverage Based on Fault Injection 

• Area and Power Overhead 
• Conclusion

© Vimal Reddy 2007 !4



NC STATE UNIVERSITY

DSN 2007

Exploiting ITR for Fault Tolerance

• Key ideas: 
– Record input-independent signals for instructions 
– Confirm their correctness upon repetition 

• This paper focuses on decode signals 
– Provides protection for fetch and decode stages 

• Longer term goal 
– Apply ITR to other input-independent stages  
– My thesis combines ITR with other microarch.-

level checks for a comprehensive fault regimen
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ITR Cache for Checking Decode Signals

• Create decode signatures at trace granularity 
– Trace ends at branch or 16 instructions (arbitrary) 
– Combine decode signals of instructions in a trace 

• Record decode signatures in an ITR cache 
– Indexed by start PC (program counter) of a trace 

• For each new trace, compare with ITR cache 
– Fault if new signature mismatches ITR cache
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pc(I)

Scenario 1: ITR Cache Hit
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Signature  
GenerationIJK S2 (I, J, K)S2 (I, J, K)

Tags Signatures

S1 (I, J, K)pc(I)

HitI

≠
Fault Detected

Notes: 
-- Faults on traces that hit (S2) are detectable 
-- These faults are recoverable by flushing the processor pipeline  
    and restarting from the faulting trace

ITR Cache
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Scenario 2: ITR Cache Miss Followed by Hit
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Signature  
GenerationIJK S1 (I, J, K)S1 (I, J, K)

Tags Signatures

S1 (I, J, K)pc(I)

Miss

pc(I)I

ITR Cache
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Signature  
GenerationIJK S2 (I, J, K)S2 (I, J, K)

Tags Signatures

S1 (I, J, K)pc(I)

Hit

≠

Scenario 2: ITR Cache Miss Followed by Hit

Fault Detected

Notes: 
-- Faults on traces that miss but later hit (faulty S1) are detectable 
-- Faults on S1 need checkpoint for recovery or must abort

ITR Cache
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Scenario 3: ITR Cache Miss Followed by Eviction
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Signature  
GenerationIJK S1 (I, J, K)S1 (I, J, K)

Tags Signatures

S1 (I, J, K)pc(I)

Miss

pc(I)I

ITR Cache
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pc(M)
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Signature  
GenerationMNO S2 (M, N, O)S2 (M, N, O)

Tags Signatures

Evict

Notes: 
-- Faults on missed & evicted traces (S1) are not detected

Scenario 3: ITR Cache Miss Followed by Eviction

S2 (M, N, O)S1 (I, J, K)pc(M)pc(I)

Fault not detected

ITR Cache
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Microarchitecture Extensions to Superscalar
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Microarchitecture Extensions to Superscalar
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Microarchitecture Extensions to Superscalar
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Microarchitecture Extensions to Superscalar
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Microarchitecture Extensions to Superscalar
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Microarchitecture Extensions to Superscalar
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Microarchitecture Extensions to Superscalar
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Results: Repetition in SPEC2K INT
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Results: Repetition in SPEC2K FP
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Results: Proximity in SPEC2K INT
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Results: Proximity in SPEC2K FP
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Fault Coverage Based on ITR Cache Misses
• Loss in fault detection coverage 

– Miss-followed-by-eviction causes loss in fault detection 
– (# of missed & evicted traces) x instructions/trace 

• Loss in fault recovery coverage (w/o checkpoints) 
– Misses cause loss in fault recovery 
– (# of missed traces) x instructions/trace 

• Tried various ITR cache configurations 
– Direct-mapped (DM), 2,4,8,16-way, fully-associative (FA) 
– 256, 512 and 1024 signatures 
– Bzip, gzip, art, mgrid and wupwise had <1% loss in 

coverage (results not shown)
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Results: Loss in Fault Detection Coverage
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Coverage loss  
correlates with  
proximity of  
repetition 
e.g., perl and  
vortex

Capacity is  
important for  
poor performers

For 2-way, 1024 
signatures:  
8% max. (vortex)  
and 1.3% avg. loss  
in detection coverage
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Results: Loss in Fault Recovery Coverage
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Recovery  
coverage  
loss is bigger 
than loss in 
detection  
coverage

For 2-way, 1024 
signatures:  
15% max.  
(vortex)  and  
2.5% avg. loss  
in recovery coverage
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Fault Injection Experiments
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• Injected faults on decode signals of a cycle-
accurate simulator  

• Based on MIPS R10K processor 
• 1000 random faults per benchmark
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Decode Signals Modeled
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 Field Description Width
opcode instruction opcode 8

flags

decoded control flags (is_int, is_fp, 
is_signed/unsigned, is_branch, is_uncond, 
is_ld, is_st, mem_left/right, is_RR, 
is_disp, is_direct, is_trap)

12

shamt shift amount 5
rsrc1 source register operand 5
rsrc2 source register operand 5
rdst destination register operand 5
lat execution latency 2

imm immediate 16
num_rsrc number of source operands 2
num_rdst number of destination operands 1
mem_size size of memory word 3

Total width 64
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Fault Injection Outcomes
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Fault

SDC Mask

ITR+SDC

MayITR+SDC

Undet+SDC

ITR+Mask

Undet+Mask

MayITR+Mask

92% 97%

7%

1%

37%

3%

0%

63%

Refer paper for other interesting fault injection results
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Area Overhead
• The IBM S/390 G5 

replicates the fetch and 
decode units (I-unit) 

• ITR cache configuration 
similar to BTB in the picture 
(2K entries, 2-way assoc., 
35 bits per entry) 

• ITR cache is 1/7th the I-unit

*From  [slegel-IEEE-Micro-1999]
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Power Overhead
• Redundant fetching is a major power overhead 
• Compare I-cache of IBM power4 (64KB, dm, 128B line, 1 rd./

wr. port) with ITR cache (16KB, 2-way, 4B line, 1 rd. and 1wr. 
port) 

• Excluded redundant decoding energy (more savings in reality)
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Conclusion

• Inherent Time Redundancy is a new 
opportunity for efficient fault tolerance  

• 96% of faults on decode signals detected by 
small ITR cache (~16 KB) 

• Future work: 
– Handling benchmarks with less repetition  
– Exploiting ITR for other input-independent  parts 

of the processor 
– Evaluating a comprehensive fault regimen that 

includes ITR
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