

Inherent Time Redundancy (ITR):
Using Program Repetition for Low-Overhead Fault Tolerance

Vimal Reddy, Eric Rotenberg
Center for Efficient, Secure and Reliable Computing, ECE, North Carolina State University

{vkreddy, ericro}@ece.ncsu.edu

Abstract

A new approach is proposed that exploits repetition
inherent in programs to provide low-overhead
transient fault protection in a processor. Programs
repeatedly execute the same instructions within close
time periods. This can be viewed as a time redundant
re-execution of a program, except that inputs to these
inherent time redundant (ITR) instructions vary.
Nevertheless, certain microarchitectural events in the
processor are independent of the input and only
depend on the program instructions. Such events can
be recorded and confirmed when ITR instructions
repeat.

In this paper, we use ITR to detect transient faults
in the fetch and decode units of a processor pipeline,
avoiding costly approaches like structural duplication
or explicit time redundant execution.

1. Introduction

Technology scaling makes transistors more
susceptible to transient faults. As a result, it is
becoming increasingly important to incorporate
transient fault tolerance in future processors.

Traditional transient fault tolerance approaches
duplicate in time or space for robust fault tolerance,
but are expensive in terms of performance, area, and
power, counteracting the very benefits of technology
scaling. To make fault tolerance viable for commodity
processors, unconventional techniques are needed that
provide significant fault protection in an efficient
manner. In this spirit, we are pursuing a new approach
to fault tolerance based on microarchitecture insights.
The idea is to engage a regimen of low-overhead
microarchitecture-level fault checks. Each check
protects a distinct part of the pipeline, thus, the
regimen as a whole provides comprehensive protection
of the processor. This paper adds to the suite of
microarchitecture checks that we have begun
developing. Recently, we proposed microarchitecture
assertions to protect the register rename unit and the
out-of-order scheduler of a superscalar processor [3].
In this paper, we introduce a new concept called

inherent time redundancy (ITR), which provides the
basis for developing low-overhead fault checks to
protect the fetch and decode units of a superscalar
processor. Although ITR only protects the fetch and
decode units, it is an essential piece of an overall
regimen for achieving comprehensive pipeline
coverage.

Programs possess inherent time redundancy (ITR):
the same instructions are executed repeatedly at short
intervals. This program repetition presents an
opportunity to discover low-overhead fault checks in a
processor. The key idea is to observe
microarchitectural events which depend purely on
program instructions, and confirm the occurrence of
those events when instructions repeat.

There have been previous studies on instruction
repetition in programs [1][2]. The focus has been on
reusability of dynamic instruction results to reduce the
number of instructions executed for high performance.
Our proposal is to exploit repetition of static
instructions for low-overhead fault tolerance.

We characterize repetition in SPEC2K programs in
Figure 1 (integer benchmarks) and Figure 2 (floating
point benchmarks). Instructions are grouped into traces
that terminate either on a branching instruction or on
reaching a limit of 16 instructions. The graphs plot the
number of dynamic instructions contributed by static
traces. Static instructions are unique instructions in the
program binary, whereas dynamic instructions
correspond to the instruction stream that unfolds
during execution of the program binary.

A relatively small number of static instructions
contribute a large number of dynamic instructions. For
instance, in most integer benchmarks, less than five
hundred static traces contribute nearly all dynamic
instructions (e.g., in bzip, 100 static traces contribute
99% of all dynamic instructions). Gcc and vortex are
the only exceptions due to the large number of static
traces. Floating point benchmarks are even more
repetitive, as seen in Figure 2 (e.g., in wupwise, 50
static traces contribute 99% of all dynamic
instructions).

An important aspect of repetition is the distance at
which traces repeat. This is characterized in Figure 3

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Number of static traces

%
 o

f t
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

bzip
vpr
gzip
gap
parser
twolf
perl
vortex
gcc

Figure 1. Dynamic instructions per 100 static

traces (integer benchmarks).

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Number of static traces

%
 o

f t
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

wupwise
mgrid
art
swim
applu
equake
apsi

Figure 2. Dynamic instructions per 50 static

traces (floating point benchmarks).
(integer benchmarks) and Figure 4 (floating point
benchmarks). Here, instructions are grouped into traces
like before, and the number of dynamic instructions
between repeating traces is measured. The graphs
show the number of dynamic instructions contributed
by all static traces that repeat within a particular
distance. Distances are shown at increasing intervals of
five hundred dynamic instructions.

As seen, there is a high degree of ITR in programs.
In all integer benchmarks, except perl and vortex, 85%
of all dynamic instructions are contributed by traces
repeating within five thousand instructions, four of
them reaching that target within one thousand
instructions. In all floating point benchmarks, except
apsi, nearly all dynamic instructions are contributed by
repetitive traces with high proximity (within 1500
instructions).

The main idea of the paper is to record and confirm
microarchitecture events that occur while executing
highly repetitive instruction traces. The fact that
relatively few static traces contribute heavily to the
total instruction count, suggests that a small structure is
sufficient to record events for most benchmarks. We
propose to use a small cache to record
microarchitecture events during repetitive traces. The
cache is indexed with the program counter (PC) that

0

10

20

30

40

50

60

70

80

90

100

0
 <

50
0

 <
10

00

 <
15

00

 <
20

00

 <
25

00

 <
30

00

 <
35

00

 <
40

00

 <
45

00

 <
50

00

 <
55

00

 <
60

00

 <
65

00

 <
70

00

 <
75

00

 <
80

00

 <
85

00

 <
90

00

 <
95

00

 <
10

00
0

of dynamic instructions separating repetitive traces

%
 o

f t
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

bzip
gzip
parser
gap
vpr
gcc
twolf
perl
vortex

Figure 3. Distance between trace repetitions

(integer benchmarks).

0

10

20

30

40

50

60

70

80

90

100

0
 <

50
0

 <
10

00

 <
15

00

 <
20

00

 <
25

00

 <
30

00

 <
35

00

 <
40

00

 <
45

00

 <
50

00

 <
55

00

 <
60

00

 <
65

00

 <
70

00

 <
75

00

 <
80

00

 <
85

00

 <
90

00

 <
95

00

 <
10

00
0

of dynamic instructions separating repetitive traces

%
 o

f t
ot

al
 d

yn
am

ic
 in

st
ru

ct
io

ns

art
mgrid
wupwise
applu
equake
swim
apsi

Figure 4. Distance between trace repetitions

(floating point benchmarks).
starts a trace. A miss in the cache indicates the
unavailability of a counterpart to check the correctness
of the microarchitectural events. However, misses do
not always lead to loss of fault detection. A future hit
to a trace that previously missed in the cache can
detect anomalies during execution of both the missed
instance and the newly executed instance of the trace.
In a single-event upset model, a reasonable assumption
for fault studies, the two instances will differ if there is
a fault. However, if a missed instance is evicted from
the cache before it is accessed, it constitutes a loss in
fault detection, since a fault during the missed instance
goes undetected. Based on this, even benchmarks with
a large number of static traces and mild proximity
(e.g., gcc) can get reasonable fault detection coverage
with small event caches.

The recorded microarchitectural events depend
purely on instructions being executed. For example,
the decode signals generated upon fetching and
decoding an instruction are the same across all
instances. Recording and confirming them to be the
same can detect faults in the fetch and decode units of
a processor. Indexes into the rename map table and
architectural map table generated for a trace are
constant across all its instances. Recording and
confirming their correctness will boost the fault

coverage of the rename unit of a processor, especially
when used with schemes like Register Name
Authentication (RNA) [3]. For instance, RNA cannot
detect pure source renaming errors like reading from a
wrong index in the rename map table. Further,
recording and confirming correct issue ordering among
instructions in a trace can detect faults in the out-of-
order scheduler of a processor, similar to Timestamp-
based Assertion Checking (TAC) [3].

In this paper, we add microarchitecture support to
use ITR to extend transient fault protection to the fetch
and decode units of a processor. Signals generated by
the decode unit for instructions in a trace are combined
to generate a signature. The signature is stored in a
small cache, called the ITR cache. On the next
occurrence of the trace, the signature is re-generated
and compared to the signature stored in the ITR cache.
A mismatch indicates a transient fault either in the
fetch or the decode unit of the processor. On fault
detection, safe recovery may be possible by flushing
and restarting the processor from the faulting trace, or
the program must be aborted through a machine check
exception. We provide insight into diagnosing a fault
and define criteria to accurately identify fault scenarios
where safe recovery is possible, and where aborting
the program is the only option.

The main contributions of this paper are as follows:
• A new fault tolerance approach is proposed based

on inherent time redundancy (ITR) in programs.
The key idea is to record and confirm
microarchitectural events that depend purely on
program instructions.

• We propose an ITR cache to record
microarchitectural events pertaining to a trace of
instructions. The key novelty is that misses in the
ITR cache do not directly lead to a loss in fault
detection. Only evictions of unreferenced, missed
instances lead to a loss in fault detection coverage.
We develop microarchitectural support to use the
ITR cache for protecting the fetch and decode units
of a high-performance processor.

• On fault detection, we show it is possible to
accurately identify the correct recovery strategy:
either a lightweight flush and restart of the
processor, or a more expensive program restart.

• We show that the ITR-based approach compares
favorably to conventional approaches like structural
duplication and time redundant execution, in terms
of area and power.
The rest of the paper is organized as follows.

Section 2 discusses detailed microarchitectural support
to exploit ITR for protecting the fetch and decode units
of a superscalar processor. In Section 3, the ITR

cache design space is explored to achieve high fault
coverage. In section 4, we perform fault injection
experiments to further evaluate fault coverage. In
Section 5, we compare area and power overheads of
the ITR approach to other fault tolerance approaches.
Section 6 discusses related work and Section 7
summarizes the paper.

2. ITR components

The architecture of a superscalar processor,
augmented with support for exploiting ITR, is shown
in Figure 5. The shaded components are newly added
to protect the fetch and decode units of the processor
using ITR. The new components are described in
subsections 2.1 through 2.5.

2.1. ITR signature generation

As seen in Figure 5, signals from the decode unit
are redirected for signature generation. The signals are
continuously combined until the end of each trace. The
end of a trace is signaled upon encountering a
branching instruction or the last of 16 instructions. On
a trace ending instruction, the current signature is
dispatched into the ITR ROB. The signature is then
reset and a new start PC is latched in preparation for
the next trace.

Signature generation could be done in many ways.
We chose to simply bitwise XOR the signals of a new
instruction with corresponding signals of previous
instructions in the trace. For a given trace, if a fault on
an instruction in the fetch unit or the decode unit
causes a wrong signal to be produced by the decode
unit, then the signature of the trace would differ from
that of a fault-free signature. Even multiple faulty
signals in a trace would lead to a difference in
signature, unless an even number of instructions in the
trace produce a fault in the same signal. Using XOR to
produce the signature loses information about the exact
instruction that caused a fault. But this precision is not
required as long as recovery is cognizant that a fault
could be anywhere in the trace and rollback is prior to
the trace. For a single-event upset model, we believe
this overall approach is sufficient for detecting faults
on an instruction of a trace in the fetch and decode
units.

2.2. ITR ROB and ITR cache

Trace signatures are dispatched into the ITR ROB,
when trace termination is signaled. The ITR ROB is
sized to match the number of branches that could exist
in the processor, since every branch causes a new
trace. Since a trace is terminated on a branch, its ITR

Figure 5. Superscalar processor augmented with ITR support.

ROB entry is noted in the branch’s checkpoint to
facilitate rollback to the correct ITR ROB entry on
branch mispredictions.

Each ITR ROB entry stores the start PC and the
signature of a trace. An ITR ROB entry also contains
control bits (chk, miss, retry), which indicate the status
of checking the trace with the copy in the ITR cache.

The ITR cache stores signatures of previously
encountered traces and is indexed with the start PC of
a trace. Each trace in the ITR ROB accesses the ITR
cache at dispatch. This ensures that reading the ITR
cache is complete before the instructions in the trace
are ready to commit. If the trace hits, the signature is
read from the ITR cache and checked with the
signature of the trace. Regardless of the outcome, the
chk (for checked) bit is set in the corresponding ITR
ROB entry. If it’s a mismatch, the retry bit of the ITR
ROB entry is set. If the trace misses, the miss bit of the
ITR ROB entry is set.

The ITR ROB enables the commit logic of the
processor to determine whether the trace of the
currently committing instruction has been formed,
whether it is has been checked, whether it is faulty, etc.
The only extra work for the commit logic is to poll the
head entry of the ITR ROB when an instruction is
ready to commit. It polls to see if the miss bit or the
chk bit of the ITR ROB head entry is set. If neither is
set, commit is stalled until one of the bits is set. If the
miss bit is set, then a write to the ITR cache is initiated

and commit from the main ROB progresses normally.
If the chk bit is set, and additionally the retry bit is not
set, then instructions are committed from the main
ROB normally. If the retry bit is set, it indicates a
transient fault occurred in either the new trace or the
previous trace that stored its signature in the ITR
cache. To confirm which trace instance is faulty, the
processor is flushed and restarted from the start PC of
the new trace. If the signatures mismatch again, then it
is clear the previous trace executed with a fault. Since
this means the processor’s architectural state could be
corrupted, a machine check exception is raised and the
program is aborted. However, if the signatures match
after the retry, it means the new trace was faulty, and
recovery through flushing and restarting the processor
was successful. In all cases, when a trace-terminating
instruction is committed from the main ROB, the ITR
ROB head entry is freed.

2.3. Fault detection and recovery coverage

Writing to the ITR cache involves replacing an
existing, least recently used (LRU) trace signature.
Evicting an existing trace signature has implications on
the fault detection coverage, i.e., the number of
instructions in which a fault can be detected. If a
trace’s signature is not referenced before being evicted,
it amounts to a loss in fault detection coverage. To
prevent this, a bit could be added to each cache line to

indicate that it is checked and the replacement policy
could be modified to evict the LRU trace that has been
checked. We do not study this optimization and instead
report the loss in fault detection coverage for different
cache configurations. Moreover, this policy is not
applicable to direct mapped caches and breaks down
when no ways of a set are checked yet.

ITR cache misses decrease the fault recovery
coverage, i.e., the number of instructions in which a
fault can be detected and successfully recovered by
flushing and restarting the processor. This is because
on a miss, an unchecked trace signature is entered into
the cache. If the unchecked trace is faulty, the fault is
only detected in the future by the next instance of the
trace. However, since the faulty trace has already
corrupted the architectural state, the program has to be
aborted. In Section 3, we measure the fault coverage
for different ITR cache configurations.

Recovery coverage can be enhanced through a
coarse-grained checkpointing scheme (e.g., [6][7]).
The key idea is to take a coarse-grain checkpoint when
there are no unchecked lines in the ITR cache. The
number of unchecked lines could be tracked. Once it
reaches zero, a coarse-grain checkpoint could be taken.
Then in cases where the lightweight processor flush
and restart is not possible, recovery can be done by
rolling back to the previously taken coarse-grain
checkpoint instead of aborting the program.

2.4. Faults on ITR components

The new ITR components do not make the
processor more vulnerable to faults, assuming a single-
event upset model. A fault on signature generation
components will be detected as a signature mismatch.
A fault on the latched start PC is not a concern. If its
signature matches the faulty start PC’s signature, the
fault gets masked. If it mismatches, the fault is
detected. If it misses in the ITR cache, the next
instance of the faulty PC will either detect it or mask it.
The control bits chk, miss and retry can be protected
using one-hot encoding. The possible states are: {none
set – 0001, chk and retry set – 0010, chk set and retry
not set—0100, miss set – 1000}. Faults on the ITR
cache will cause false machine check exceptions when
they are detected, i.e., a retry will indicate a fault on
the trace signature in the ITR cache and a machine
check exception will be raised, as described in Section
2.2. This can be avoided by parity-protecting each line
in the ITR cache. On a signature mismatch, retry is
attempted. If the signature mismatches again, then
parity is checked on the trace signature in the cache. A
parity error indicates an error in the ITR cache and not
the previous instance of the trace. Successful recovery

involves invalidating the erroneous line in the cache,
or updating it with the signature of the new trace.

2.5. Faults on the program counter (PC)

A fault on the PC or the next-PC logic causes
incorrect instructions to be fetched from the I-cache.

If the disruption is in the middle of a trace, then its
signature will be a combination of signals from correct
and incorrect instructions, and will differ from the
trace’s fault-free signature. In this case, a PC fault is
detected by the ITR cache.

If the disruption is at a natural trace boundary, then
a wrong trace is fetched from the I-cache. Since the
signature of the wrong trace itself is unaffected by the
fault, it will agree with the ITR cache. Hence, the PC
that starts a trace at a natural trace boundary represents
a vulnerability of the ITR cache, and needs other
means of protection. For natural trace boundaries
caused by branches, substantial protection of the PC
already exists, because the execution unit checks
branch targets predicted by the fetch unit. For natural
trace boundaries caused by the maximum trace length,
protection of the PC is possible by adding a simple
commit PC and asserting that a committing
instruction’s PC matches the commit PC. The commit
PC is updated as follows. Sequential committing
instructions add their length (which can be recorded at
decode for variable-length ISAs) to the commit PC and
branches update the commit PC with their calculated
PC. Comparing a committing instruction’s PC with the
commit PC will detect a discontinuity between two
otherwise sequential traces. As part of future work, we
plan to comprehensively study PC related fault
scenarios to identify other potential vulnerabilities and
devise robust solutions.

3. The ITR cache design space

As noted in Section 2.3, evictions of unreferenced
lines from the ITR cache cause a loss in fault detection
coverage, and misses in the ITR cache cause a loss in
fault recovery coverage. In this section, we try
different ITR cache configurations and measure the
loss in fault detection coverage and fault recovery
coverage for each design point. Loss in coverage is
measured by noting the number of instructions in
vulnerable traces.

For experiments, we ran SPEC2K integer and
floating point benchmarks compiled with the
Simplescalar gcc compiler for the PISA ISA [14]. The
compiler optimization level is –O3. Reference inputs
are used. In our runs, we skip 900 million instructions
and simulate 200 million instructions.

Two ITR cache parameters are varied, (1)
Associativity: direct mapped (dm), 2-way, 4-way, 8-
way, 16-way and fully associative (fa), and (2) Cache
size: 256, 512 and 1024 signatures. Figure 6 shows the
loss in fault detection coverage and Figure 7 shows the
loss in fault recovery coverage for the various cache
configurations. For a given associativity, a smaller
cache increases the number of evictions of
unreferenced ITR signatures and the number of ITR
cache misses. The corresponding increase in coverage
loss is shown stacked for the various cache sizes.

Bzip, gzip, art, mgrid and wupwise have negligible
coverage loss for all ITR cache configurations. For
clarity, they are not included in the graphs. Their
excellent ITR cache behavior can be explained by
referring back to Figure 3 and Figure 4, which
characterize ITR in benchmarks. In these benchmarks,
traces repeat in close proximity and such traces
contribute to nearly all the dynamic instructions.

In fact, coverage loss for all benchmarks correlates
with their characteristics in Figure 3 and Figure 4. In
perl and vortex, traces that repeat far apart contribute
to a large number of dynamic instructions.
Correspondingly, they have the highest loss in fault
coverage. Cache capacity has a big impact on
mitigating this loss. For example, in vortex, for a
direct-mapped cache, increasing the cache capacity to
1024 signatures from 256 signatures decreases the loss
in fault detection coverage to 12% from 33%.

Gcc, twolf and apsi also have a notable number of
traces that repeat far apart, and experience a loss in
fault coverage. They also benefit significantly from
increasing the cache capacity. For insight, we refer to
Table 1. It shows the total number of static traces for
all benchmarks. Notice for vortex and perl, the number
of static traces (2,655 and 1,704) is higher than the
capacity of all the ITR caches simulated. Their poor
trace proximity exposes this capacity problem. Far-
apart repeating traces get evicted before they are
accessed again, leading to a notable loss in fault
coverage. Increasing the cache capacity somewhat
makes up for the poor proximity and, hence, has a big
impact on reducing coverage loss. Gcc confirms our
hypothesis that proximity amongst traces is a strong
factor. Even though it has far more traces than vortex
and perl (24,017), it has lower coverage loss for a
given cache configuration as a result of its better trace
proximity. Mgrid is another example. It has negligible
coverage loss for all ITR cache configurations even
though it has a relatively high number of static traces
(798). Again, proximity amongst its traces is excellent.
The remaining benchmarks have a small loss in fault
coverage which can be overcome with bigger caches or
higher associativity.

Table 1. Number of static traces for SPEC.

SPECInt #static
bzip 283
gap 696
gcc 24017
gzip 291
parser 865
perl 1704
twolf 481
vortex 2655
vpr 292

SPECfp #static
applu 282
apsi 1274
art 98
equake 336
mgrid 798
swim 73
wupwise 18

Note that the loss in fault coverage should not be
interpreted as a conventional cache miss rate, i.e., it
does not correspond to signatures that missed on
accessing the ITR cache. Firstly, the loss in fault
detection coverage (Figure 6) corresponds to
signatures that were evicted from the ITR cache before
being referenced. Secondly, both the loss in fault
detection coverage and the loss in fault recovery
coverage are influenced by the number of instructions
in signatures, which is not uniform across all
signatures. These factors may explain why, in some
benchmarks, higher associativity sometimes happens
to show slightly higher loss in fault coverage than
lower associativity.

An important point is that the loss in fault detection
coverage is significantly lesser than the loss in fault
recovery coverage for all benchmarks. This is because
all ITR cache misses lead to a loss in recovery
coverage, but only those missed traces that are then
evicted before being referenced lead to a loss in
detection coverage.

Across all benchmarks, for a 2-way associative
cache with 1024 signatures, the average loss in fault
detection coverage is 1.3% with a maximum loss of
8.2% for vortex. The corresponding numbers for loss
in fault recovery coverage are 2.5% average and 15%
maximum for vortex.

In general, programs with less repetition or greater
distance between repeated traces would have a higher
loss in fault coverage. One possible solution to
mitigate this is to redundantly fetch and decode traces
only on a miss in the ITR cache, still achieving the
benefits of ITR but falling back on conventional time
redundancy when inherent time redundancy fails. After
the signature of the re-fetched trace is checked against
the ITR cache, instructions in that trace are discarded
from the pipeline. Another possible solution is to have
a fully duplicated frontend, like in the IBM S/390 G5
processor [4], but use the ITR cache to guide when the
space redundancy should be exercised (for significant
power savings). The use of ITR as a filter for
selectively exercising time redundancy or space
redundancy is an interesting direction we want to
explore in future research.

0
5

10
15
20
25
30
35
40
45
50
55

dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa

gap gcc parser perl twolf vortex vpr applu apsi equake swim

256 signatures
512 signatures
1024 signatures

Figure 6. Loss in fault detection coverage.

0
5

10
15
20
25
30
35
40
45
50
55

dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa dm
2-

w
ay

4-
w
ay

8-
w
ay

16
-w

ay fa

gap gcc parser perl twolf vortex vpr applu apsi equake swim

256 signatures
512 signatures
1024 signatures

Figure 7. Loss in fault recovery coverage.

4. Fault injection experiments
We perform fault injection on a detailed cycle-level

simulator that models a microarchitecture similar to the
MIPS R10K processor [5].

For each benchmark, one thousand faults are
randomly injected on the decode signals from Table 2.
Injecting a fault involves flipping a randomly selected
bit. A separate “golden” (fault-free) simulator is run in
parallel with the faulty simulator. When an instruction
is committed to the architectural state in the faulty
simulator, it is compared with its golden counterpart to
determine whether or not the architectural state is
being corrupted. Any fault that leads to corruption of
architectural state is classified as a potential silent data
corruption (SDC) fault. Likewise, if no corruption of
architectural state is observed for a set period of time

after a fault is injected (the observation window), it is
classified as a masked fault. In this study, we use an
observation window of one million cycles.

An injected fault may lead to one of six possible
outcomes, depending on (1) whether the fault is
detected by an ITR check (“ITR”) or undetected within
the scope of the observation window (“MayITR”)1 or
undetected for sure (“Undet”), and (2) whether the
fault corrupts architectural state (“SDC”) or not
(“Mask”). Based on this, the six possible outcomes are
ITR+SDC, ITR+Mask, MayITR+SDC,
MayITR+Mask, Undet+SDC, and Undet+Mask.

1 A fault may not get detected within the scope of the observation
window, but its corresponding faulty signature may still be in the
ITR cache. In this case, it is possible that the fault will be detected by
ITR in the future, but we would have to extend the observation
window to confirm this.

%
 o

f a
ll

dy
na

m
ic

 in
st

ru
ct

io
ns

%
 o

f a
ll

dy
na

m
ic

 in
st

ru
ct

io
ns

Table 2. List of decode signals.
Field Description Width

opcode instruction opcode 8

flags

decoded control flags (is_int, is_fp,
is_signed/unsigned, is_branch, is_uncond,
is_ld, is_st, mem_left/right, is_RR,
is_disp, is_direct, is_trap)

12

shamt shift amount 5
rsrc1 source register operand 5
rsrc2 source register operand 5
rdst destination register operand 5
lat execution latency 2

imm immediate 16
num_rsrc number of source operands 2
num_rdst number of destination operands 1
mem_size size of memory word 3

Total width 64
We further qualify ITR+SDC outcomes with the

possibility of recovery (ITR+SDC+R) or only
detection (ITR+SDC+D). On detecting a fault through
ITR, if the signature accessing the ITR cache is faulty
as opposed to the signature within the cache, then, the
fault is recoverable by flushing the ROB (discussed in
Section 2.3).

We add two more fault checks to support our
experiments. A watchdog timer check (wdog) is added
to detect deadlocks caused by some faults (e.g., faulty
source registers). A sequential-PC check (spc) is added
at retirement (discussed in Section 2.5) to detect faults
pertaining to control flow.

In the following experiments, we use a two-way
set-associative ITR cache holding 1024 signatures. The
breakdown of fault injection outcomes is shown in
Figure 8. We show fault injection results for the same
set of SPEC benchmarks whose coverage results are
reported in Section 3. As seen, a large percentage of
injected faults are detected through the ITR cache
(95.4% on average). On average, 32% of the injected
faults are detected and recovered by ITR that would
have otherwise led to a SDC (ITR+SDC+R). Only a
small percentage (1% on average) of SDC faults
detected through ITR is not recoverable
(ITR+SDC+D). A large percentage of faults that are
detected by ITR happen to get masked (59.4% on
average). When a fault is injected on a decode signal
that is not relevant to the instruction being decoded or
does not lead to an error (e.g., increasing lat, the
execution latency, only delays wakeup of dependent
instructions), then the fault gets masked, but the
signature is faulty and gets detected by the ITR cache.
A noticeable fraction of faults (3% on average) are
detected and recovered by ITR that would have
otherwise led to a deadlock (ITR+wdog+R),
highlighting another important benefit.

The fraction of faults undetected by ITR within the
observation window (MayITR+*) is negligible. This

indicates that a one million cycle observation window
is sufficient.

Interestingly, the sequential PC check detected a
small fraction of faults (0.1% on average) that ITR
alone could not detect (spc+SDC). The sequential-PC
check mainly detected faults on the is_branch control
flag, which indicates whether or not an instruction is a
conditional branch. Consider the following fault
scenario. Suppose that the fetch unit predicts an
instruction to be a conditional branch (BTB hit signals
a conditional branch and gshare predicts taken).
Suppose the instruction is truly a conditional branch
(BTB correct) and is actually not taken (gshare
incorrect). Then suppose that a fault causes is_branch
to be false instead of true. First, this fault causes a
SDC because the branch misprediction will not be
repaired. Second, because is_branch is false, the
retirement PC is updated in a sequential way. The spc
check will fire in this case, because the next retiring
instruction is not sequential. Note that if the prediction
was correct (actually taken), the spc check still fires,
but this is a masked rather than SDC fault.

On average, 4.5% of injected faults go undetected
by ITR. Only about 2.6% of the faults lead to SDC and
are not detected by ITR (Undet+SDC). A very small
fraction of faults (0.1% on average) lead to a deadlock
that is not detected by ITR but is caught by the
watchdog timer. The remaining undetected faults are
masked (on average, 1.8% of all faults).

5. Area and power comparisons

Structural duplication can be used to protect the
fetch and decode units of the processor. In the IBM
S/390 G5 processor [4], the I-unit, comprised of the
fetch and decode units, is duplicated and signals from
the two units are compared to detect transient faults.
However, this direct approach has significant area and
power overheads. We attempt to compare the area and
power overhead of the ITR cache with that of the I-
unit, to see whether or not the ITR-based approach is
attractive compared to straightforward duplication. The
die photo of the IBM S/390 G5 provides the area of the
I-unit [4]. To estimate the area of the ITR cache, a
structure is selected from the die photo that is similar
in configuration to the ITR cache. The branch target
buffer (BTB) of the G5 has a configuration similar to
the ITR cache: 2048 entries, 2-way associative, 35 bits
per entry [15]. Based on the decode signals in Table 2,
the size of the ITR signature is 64 bits. Though each
ITR entry is almost twice as wide as the G5’s BTB
entry, only half as many entries as the BTB (1024
entries) are needed for good coverage, from results in
Section 3 and Section 4.

0

10

20

30

40

50

60

70

80

90

100

ga
p

gc
c

pa
rse

r
pe

rl
tw

olf

vo
rte

x
vp

r
ap

plu ap
si

eq
ua

ke
sw

im Avg

Undet+SDC
Undet+wdog
Undet+Mask
spc+SDC
MayITR+SDC
MayITR+Mask
ITR+wdog+R
ITR+SDC+R
ITR+SDC+D
ITR+Mask

Figure 8. Fault injection results.

The area of the I-unit from the die photo is 1.5 cm x
1.4 cm, i.e., 2.1 cm2. The area of the ITR-cache like
BTB structure from the die photo is 1.5 cm x 0.2 cm,
i.e., 0.3 cm2. The ITR cache is about one seventh the
area of the I-unit. Hence, the ITR-based approach to
protect the frontend is more area-effective than
structural duplication of the entire I-unit.

We next try to find the power-effectiveness of the
ITR approach. A major power overhead of structural
duplication and conventional time redundancy is that
of fetching an instruction twice from the instruction
cache. We model power consumption by measuring
the number of accesses to the ITR cache and the
instruction cache of the processor. Both cache models
are fed into CACTI [17] to obtain the energy
consumption per access. Multiplying the number of
accesses with the energy consumed per access gives us
the energy consumption.

Due to lack of information on the instruction cache
configuration of the IBM S/390 G5, we chose the
instruction cache of the IBM Power4 [16]. The
configuration of the Power4 I-cache is: 64KB, direct-
mapped, 128 byte line and one read/write port. The
configuration of the ITR cache is: 8KB (1024 entries),
2-way associative, 8 byte line, and one read/write port
(or one read and one write port). We chose the 0.18
micron technology used in the IBM Power4.

The CACTI numbers were: 0.87 nJ per access for
the I-cache, 0.58 nJ per access (or 0.84 nJ for separate
read and write ports) for the ITR cache. Overall energy
consumption is shown in Figure 9. As seen, the ITR-
based approach is far more energy efficient than
fetching twice from the instruction cache. Note that the

energy savings will be even greater if also considering
the redundant decoding of instructions in the frontend
in the case of structural duplication or traditional time
redundancy.

0

10

20

30

40

50

60

70

80

90

100

bz
ip ga

p
gc

c
gz

ip
pa

rse
r

pe
rl

tw
olf

vo
rte

x vp
r

ap
plu ap

si art

eq
ua

ke
mgri

d
sw

im

wup
wise

En
er

gy
 (m

J)

ITR cache 1rd/wr
ITR cache 1rd+1wr
I-cache 1rd/wr

Figure 9. Energy of ITR cache vs. I-cache.

We see that the ITR cache is more cost-effective
than straightforward space redundancy in the IBM
mainframe processor [4]. However, it should be noted
that complete structural duplication provides more
robust fault tolerance than the ITR cache. They are two
different design points in the cost/coverage spectrum.

6. Related work

Prior research on exploiting program repetition has
focused on reusing previous instruction results through
a reuse buffer to reduce the total number of
instructions executed [1][2]. Instruction reuse has also
been used to reduce the number of redundant
instructions executed in a time-redundant execution

%
 o

f t
ot

al
 fa

ul
ts

 in
je

ct
ed

model [8]. In the latter work, the goal was to reduce
function unit pressure. Instead of executing two copies
of an instruction using two function units, in some
cases it is possible to execute one copy using a
function unit and the other copy using a reuse buffer.
ITR reduces pressure in the fetch and decode units,
whereas their approach requires fetching and decoding
all instructions twice. In other words, their approach
only addresses the execution stage and is an orthogonal
technique that could be used in an overall fault
tolerance regimen.

Amongst the several proposals to reduce overheads
of full-redundant execution, using ITR to protect the
fetch and decode units could improve approaches that
either do not offer protection to the frontend [9][12], or
trade performance for protection by using traditional
time-redundancy in the frontend [10][11]. In general,
frontend bandwidth is pricier than execution
bandwidth. By using ITR to protect the frontend,
traditional time-redundancy can be focused on
exploiting idle execution bandwidth [10][11][12][13].

ITR-based fault checks augment the suite of fault
checks available to processor designers. Developing
such a regimen of fault checks to protect the processor
(e.g., [3]) will lead to low-overhead fault tolerance
solutions compared to more expensive space
redundancy or time redundancy approaches.

7. Summary

We introduced a new approach to develop low-
overhead fault checks for a processor, based on
inherent time redundancy (ITR) in programs. We
proposed the ITR cache to store microarchitectural
events that depend only upon program instructions.
We demonstrated its effectiveness by developing
microarchitectural support to protect the fetch and
decode units of the processor. We gave insights on
diagnosing a fault to determine the correct recovery
procedure. We quantified fault detection coverage and
fault recovery coverage obtained for a given ITR cache
configuration. Finally, we showed that using the ITR-
based approach is more favorable than costly structural
duplication and traditional time redundancy.

8. Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments in improving this paper.
We thank Muawya Al-Otoom and Hashem Hashemi
for their help with area and power experiments. This
research was supported by NSF CAREER grant No.
CCR-0092832, and generous funding and equipment
donations from Intel. Any opinions, findings, and

conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the
views of the National Science Foundation.

9. References
[1] A. Sodani and G. S. Sohi. Dynamic instruction reuse.
ISCA 1997.

[2] A. Sodani and G. S. Sohi. An empirical analysis of
instruction repetition. ASPLOS 1998.

[3] V. K. Reddy, A. S. Al-Zawawi and E. Rotenberg.
Assertion-based microarchitecture design for improved fault
tolerance. ICCD 2006.

[4] T. J. Slegel et al. IBM’s S/390 G5 microprocessor design.
IEEE Micro, March 1999.

[5] K. C. Yeager. The MIPS R10000 superscalar processor.
IEEE Micro, April 1996.

[6] R. Teodorescu, J. Nakano and J. Torrellas. SWICH: A
prototype for efficient cache-level checkpoint and rollback.
IEEE Micro, Oct 2006.

[7] D. Sorin, M. M. K. Martin and M. D. Hill. Fast
checkpoint/recovery to support kilo-instruction speculation
and hardware fault tolerance. Tech. Report: CS-TR-2000-
1420, Univ. of Wisconsin, Madison. Oct 2000.

[8] A. Parashar, S. Gurumurthi and A. Sivasubramaniam. A
complexity effective approach to ALU bandwidth
enhancement for instruction-level temporal redundancy.
ISCA 2004.

[9] T. M. Austin. Diva: A reliable substrate for deep
submicron microarchitecture design. MICRO 1999.

[10] J. Ray, J. C. Hoe and B. Falsafi. Dual use of superscalar
datapath for transient-fault detection and recovery. MICRO
2001.

[11] J. C. Smolens, J. Kim, J. C. Hoe and B. Falsafi. Efficient
resource sharing in concurrent error detecting superscalar
microarchitectures. MICRO 2004.

[12] A. Mendelson and N. Suri. Designing high-performance
and reliable superscalar architectures – The out of order
reliable superscalar (O3RS) approach. DSN 2000.

[13] M. Franklin, G. S. Sohi and K. K. Saluja. A study of
time-redundant techniques for high-performance pipelined
computers. FTCS 1989.

[14] D. Burger, T. Austin and S. Bennett. The simplescalar
toolset, version 2. Tech Report CS-TR-1997-1342, Univ. of
Wisconsin, Madison. July 1997.

[15] M. A. Check and T. J. Slegel. Custom S/390 G5 and G6
microprocessors. IBM Journal of R&D, vol 43, #5/6. 1999.

[16] J. M. Tendler et al. Power4 system microarchitecture.
IBM Journal of R&D, vol 46, #1, 2002.

[17] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An
Integrated Cache Timing, Power and Area Model. Western
Research Lab (WRL) Research Report. 2002.

