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Abstract 
 

A new approach is proposed that exploits repetition 
inherent in programs to provide low-overhead 
transient fault protection in a processor. Programs 
repeatedly execute the same instructions within close 
time periods. This can be viewed as a time redundant 
re-execution of a program, except that inputs to these 
inherent time redundant (ITR) instructions vary. 
Nevertheless, certain microarchitectural events in the 
processor are independent of the input and only 
depend on the program instructions. Such events can 
be recorded and confirmed when ITR instructions 
repeat. 

In this paper, we use ITR to detect transient faults 
in the fetch and decode units of a processor pipeline, 
avoiding costly approaches like structural duplication 
or explicit time redundant execution. 
 
1. Introduction 

Technology scaling makes transistors more 
susceptible to transient faults. As a result, it is 
becoming increasingly important to incorporate 
transient fault tolerance in future processors. 

Traditional transient fault tolerance approaches 
duplicate in time or space for robust fault tolerance, 
but are expensive in terms of performance, area, and 
power, counteracting the very benefits of technology 
scaling. To make fault tolerance viable for commodity 
processors, unconventional techniques are needed that 
provide significant fault protection in an efficient 
manner. In this spirit, we are pursuing a new approach 
to fault tolerance based on microarchitecture insights. 
The idea is to engage a regimen of low-overhead 
microarchitecture-level fault checks. Each check 
protects a distinct part of the pipeline, thus, the 
regimen as a whole provides comprehensive protection 
of the processor. This paper adds to the suite of 
microarchitecture checks that we have begun 
developing. Recently, we proposed microarchitecture 
assertions to protect the register rename unit and the 
out-of-order scheduler of a superscalar processor [3]. 
In this paper, we introduce a new concept called 

inherent time redundancy (ITR), which provides the 
basis for developing low-overhead fault checks to 
protect the fetch and decode units of a superscalar 
processor. Although ITR only protects the fetch and 
decode units, it is an essential piece of an overall 
regimen for achieving comprehensive pipeline 
coverage. 

Programs possess inherent time redundancy (ITR): 
the same instructions are executed repeatedly at short 
intervals. This program repetition presents an 
opportunity to discover low-overhead fault checks in a 
processor. The key idea is to observe 
microarchitectural events which depend purely on 
program instructions, and confirm the occurrence of 
those events when instructions repeat. 

There have been previous studies on instruction 
repetition in programs [1][2]. The focus has been on 
reusability of dynamic instruction results to reduce the 
number of instructions executed for high performance. 
Our proposal is to exploit repetition of static 
instructions for low-overhead fault tolerance.  

We characterize repetition in SPEC2K programs in 
Figure 1 (integer benchmarks) and Figure 2 (floating 
point benchmarks). Instructions are grouped into traces 
that terminate either on a branching instruction or on 
reaching a limit of 16 instructions. The graphs plot the 
number of dynamic instructions contributed by static 
traces. Static instructions are unique instructions in the 
program binary, whereas dynamic instructions 
correspond to the instruction stream that unfolds 
during execution of the program binary. 

A relatively small number of static instructions 
contribute a large number of dynamic instructions. For 
instance, in most integer benchmarks, less than five 
hundred static traces contribute nearly all dynamic 
instructions (e.g., in bzip, 100 static traces contribute 
99% of all dynamic instructions). Gcc and vortex are 
the only exceptions due to the large number of static 
traces. Floating point benchmarks are even more 
repetitive, as seen in Figure 2 (e.g., in wupwise, 50 
static traces contribute 99% of all dynamic 
instructions). 

An important aspect of repetition is the distance at 
which traces repeat. This  is  characterized  in  Figure 3 
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Figure 1. Dynamic instructions per 100 static 

traces (integer benchmarks). 
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Figure 2. Dynamic instructions per 50 static 

traces (floating point benchmarks). 
(integer benchmarks) and Figure 4 (floating point 
benchmarks). Here, instructions are grouped into traces 
like before, and the number of dynamic instructions 
between repeating traces is measured. The graphs 
show the number of dynamic instructions contributed 
by all static traces that repeat within a particular 
distance. Distances are shown at increasing intervals of 
five hundred dynamic instructions. 

As seen, there is a high degree of ITR in programs. 
In all integer benchmarks, except perl and vortex, 85% 
of all dynamic instructions are contributed by traces 
repeating within five thousand instructions, four of 
them reaching that target within one thousand 
instructions. In all floating point benchmarks, except 
apsi, nearly all dynamic instructions are contributed by 
repetitive traces with high proximity (within 1500 
instructions). 

The main idea of the paper is to record and confirm 
microarchitecture events that occur while executing 
highly repetitive instruction traces. The fact that 
relatively few static traces contribute heavily to the 
total instruction count, suggests that a small structure is 
sufficient to record events for most benchmarks. We 
propose to use a small cache to record 
microarchitecture events during repetitive traces. The 
cache  is  indexed  with  the  program counter (PC) that 
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Figure 3. Distance between trace repetitions 

(integer benchmarks). 
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Figure 4. Distance between trace repetitions 

(floating point benchmarks). 
starts a trace. A miss in the cache indicates the 
unavailability of a counterpart to check the correctness 
of the microarchitectural events. However, misses do 
not always lead to loss of fault detection. A future hit 
to a trace that previously missed in the cache can 
detect anomalies during execution of both the missed 
instance and the newly executed instance of the trace. 
In a single-event upset model, a reasonable assumption 
for fault studies, the two instances will differ if there is 
a fault. However, if a missed instance is evicted from 
the cache before it is accessed, it constitutes a loss in 
fault detection, since a fault during the missed instance 
goes undetected. Based on this, even benchmarks with 
a large number of static traces and mild proximity 
(e.g., gcc) can get reasonable fault detection coverage 
with small event caches. 

The recorded microarchitectural events depend 
purely on instructions being executed. For example, 
the decode signals generated upon fetching and 
decoding an instruction are the same across all 
instances. Recording and confirming them to be the 
same can detect faults in the fetch and decode units of 
a processor. Indexes into the rename map table and 
architectural map table generated for a trace are 
constant across all its instances. Recording and 
confirming their correctness will boost the fault 



 

coverage of the rename unit of a processor, especially 
when used with schemes like Register Name 
Authentication (RNA) [3]. For instance, RNA cannot 
detect pure source renaming errors like reading from a 
wrong index in the rename map table. Further, 
recording and confirming correct issue ordering among 
instructions in a trace can detect faults in the out-of-
order scheduler of a processor, similar to Timestamp-
based Assertion Checking (TAC) [3]. 

In this paper, we add microarchitecture support to 
use ITR to extend transient fault protection to the fetch 
and decode units of a processor. Signals generated by 
the decode unit for instructions in a trace are combined 
to generate a signature. The signature is stored in a 
small cache, called the ITR cache. On the next 
occurrence of the trace, the signature is re-generated 
and compared to the signature stored in the ITR cache. 
A mismatch indicates a transient fault either in the 
fetch or the decode unit of the processor. On fault 
detection, safe recovery may be possible by flushing 
and restarting the processor from the faulting trace, or 
the program must be aborted through a machine check 
exception. We provide insight into diagnosing a fault 
and define criteria to accurately identify fault scenarios 
where safe recovery is possible, and where aborting 
the program is the only option. 

The main contributions of this paper are as follows: 
• A new fault tolerance approach is proposed based 

on inherent time redundancy (ITR) in programs. 
The key idea is to record and confirm 
microarchitectural events that depend purely on 
program instructions. 

• We propose an ITR cache to record 
microarchitectural events pertaining to a trace of 
instructions. The key novelty is that misses in the 
ITR cache do not directly lead to a loss in fault 
detection. Only evictions of unreferenced, missed 
instances lead to a loss in fault detection coverage. 
We develop microarchitectural support to use the 
ITR cache for protecting the fetch and decode units 
of a high-performance processor. 

• On fault detection, we show it is possible to 
accurately identify the correct recovery strategy: 
either a lightweight flush and restart of the 
processor, or a more expensive program restart. 

• We show that the ITR-based approach compares 
favorably to conventional approaches like structural 
duplication and time redundant execution, in terms 
of area and power. 
The rest of the paper is organized as follows. 

Section 2 discusses detailed microarchitectural support 
to exploit ITR for protecting the fetch and decode units  
of a superscalar  processor. In Section 3, the ITR 

cache design space is explored to achieve high fault 
coverage. In section 4, we perform fault injection 
experiments to further evaluate fault coverage. In 
Section 5, we compare area and power overheads of 
the ITR approach to other fault tolerance approaches. 
Section 6 discusses related work and Section 7 
summarizes the paper. 
 
2. ITR components 

The architecture of a superscalar processor, 
augmented with support for exploiting ITR, is shown 
in Figure 5. The shaded components are newly added 
to protect the fetch and decode units of the processor 
using ITR. The new components are described in 
subsections 2.1 through 2.5. 
 
2.1. ITR signature generation 

As seen in Figure 5, signals from the decode unit 
are redirected for signature generation. The signals are 
continuously combined until the end of each trace. The 
end of a trace is signaled upon encountering a 
branching instruction or the last of 16 instructions. On 
a trace ending instruction, the current signature is 
dispatched into the ITR ROB. The signature is then 
reset and a new start PC is latched in preparation for 
the next trace. 

Signature generation could be done in many ways. 
We chose to simply bitwise XOR the signals of a new 
instruction with corresponding signals of previous 
instructions in the trace. For a given trace, if a fault on 
an instruction in the fetch unit or the decode unit 
causes a wrong signal to be produced by the decode 
unit, then the signature of the trace would differ from 
that of a fault-free signature. Even multiple faulty 
signals in a trace would lead to a difference in 
signature, unless an even number of instructions in the 
trace produce a fault in the same signal. Using XOR to 
produce the signature loses information about the exact 
instruction that caused a fault. But this precision is not 
required as long as recovery is cognizant that a fault 
could be anywhere in the trace and rollback is prior to 
the trace. For a single-event upset model, we believe 
this overall approach is sufficient for detecting faults 
on an instruction of a trace in the fetch and decode 
units. 
 
2.2. ITR ROB and ITR cache 

Trace signatures are dispatched into the ITR ROB, 
when trace termination is signaled. The ITR ROB is 
sized to match the number of branches that could exist 
in the processor, since every branch causes a new 
trace. Since  a  trace  is terminated on a branch, its ITR  



 

 
Figure 5. Superscalar processor augmented with ITR support. 

ROB entry is noted in the branch’s checkpoint to 
facilitate rollback to the correct ITR ROB entry on 
branch mispredictions. 

Each ITR ROB entry stores the start PC and the 
signature of a trace. An ITR ROB entry also contains 
control bits (chk, miss, retry), which indicate the status 
of checking the trace with the copy in the ITR cache. 

The ITR cache stores signatures of previously 
encountered traces and is indexed with the start PC of 
a trace. Each trace in the ITR ROB accesses the ITR 
cache at dispatch. This ensures that reading the ITR 
cache is complete before the instructions in the trace 
are ready to commit. If the trace hits, the signature is 
read from the ITR cache and checked with the 
signature of the trace. Regardless of the outcome, the 
chk (for checked) bit is set in the corresponding ITR 
ROB entry. If it’s a mismatch, the retry bit of the ITR 
ROB entry is set. If the trace misses, the miss bit of the 
ITR ROB entry is set. 

The ITR ROB enables the commit logic of the 
processor to determine whether the trace of the 
currently committing instruction has been formed, 
whether it is has been checked, whether it is faulty, etc. 
The only extra work for the commit logic is to poll the 
head entry of the ITR ROB when an instruction is 
ready to commit. It polls to see if the miss bit or the 
chk bit of the ITR ROB head entry is set. If neither is 
set, commit is stalled until one of the bits is set. If the 
miss bit is set, then a write to the ITR cache is initiated 

and commit from the main ROB progresses normally. 
If the chk bit is set, and additionally the retry bit is not 
set, then instructions are committed from the main 
ROB normally. If the retry bit is set, it indicates a 
transient fault occurred in either the new trace or the 
previous trace that stored its signature in the ITR 
cache. To confirm which trace instance is faulty, the 
processor is flushed and restarted from the start PC of 
the new trace. If the signatures mismatch again, then it 
is clear the previous trace executed with a fault. Since 
this means the processor’s architectural state could be 
corrupted, a machine check exception is raised and the 
program is aborted. However, if the signatures match 
after the retry, it means the new trace was faulty, and 
recovery through flushing and restarting the processor 
was successful. In all cases, when a trace-terminating 
instruction is committed from the main ROB, the ITR 
ROB head entry is freed. 
 
2.3. Fault detection and recovery coverage 

Writing to the ITR cache involves replacing an 
existing, least recently used (LRU) trace signature. 
Evicting an existing trace signature has implications on 
the fault detection coverage, i.e., the number of 
instructions in which a fault can be detected. If a 
trace’s signature is not referenced before being evicted, 
it amounts to a loss in fault detection coverage. To 
prevent this, a bit could be added to each cache line to 



 

indicate that it is checked and the replacement policy 
could be modified to evict the LRU trace that has been 
checked. We do not study this optimization and instead 
report the loss in fault detection coverage for different 
cache configurations. Moreover, this policy is not 
applicable to direct mapped caches and breaks down 
when no ways of a set are checked yet. 

ITR cache misses decrease the fault recovery 
coverage, i.e., the number of instructions in which a 
fault can be detected and successfully recovered by 
flushing and restarting the processor. This is because 
on a miss, an unchecked trace signature is entered into 
the cache. If the unchecked trace is faulty, the fault is 
only detected in the future by the next instance of the 
trace. However, since the faulty trace has already 
corrupted the architectural state, the program has to be 
aborted. In Section 3, we measure the fault coverage 
for different ITR cache configurations.  

Recovery coverage can be enhanced through a 
coarse-grained checkpointing scheme (e.g., [6][7]). 
The key idea is to take a coarse-grain checkpoint when 
there are no unchecked lines in the ITR cache. The 
number of unchecked lines could be tracked. Once it 
reaches zero, a coarse-grain checkpoint could be taken. 
Then in cases where the lightweight processor flush 
and restart is not possible, recovery can be done by 
rolling back to the previously taken coarse-grain 
checkpoint instead of aborting the program. 
 
2.4. Faults on ITR components 

The new ITR components do not make the 
processor more vulnerable to faults, assuming a single-
event upset model. A fault on signature generation 
components will be detected as a signature mismatch. 
A fault on the latched start PC is not a concern. If its 
signature matches the faulty start PC’s signature, the 
fault gets masked. If it mismatches, the fault is 
detected. If it misses in the ITR cache, the next 
instance of the faulty PC will either detect it or mask it. 
The control bits chk, miss and retry can be protected 
using one-hot encoding. The possible states are: {none 
set – 0001, chk and retry set – 0010, chk set and retry 
not set—0100, miss set – 1000}. Faults on the ITR 
cache will cause false machine check exceptions when 
they are detected, i.e., a retry will indicate a fault on 
the trace signature in the ITR cache and a machine 
check exception will be raised, as described in Section 
2.2. This can be avoided by parity-protecting each line 
in the ITR cache. On a signature mismatch, retry is 
attempted. If the signature mismatches again, then 
parity is checked on the trace signature in the cache. A 
parity error indicates an error in the ITR cache and not 
the previous instance of the trace. Successful recovery 

involves invalidating the erroneous line in the cache, 
or updating it with the signature of the new trace.  
 
2.5. Faults on the program counter (PC) 

A fault on the PC or the next-PC logic causes 
incorrect instructions to be fetched from the I-cache.  

If the disruption is in the middle of a trace, then its 
signature will be a combination of signals from correct 
and incorrect instructions, and will differ from the 
trace’s fault-free signature. In this case, a PC fault is 
detected by the ITR cache.  

If the disruption is at a natural trace boundary, then 
a wrong trace is fetched from the I-cache. Since the 
signature of the wrong trace itself is unaffected by the 
fault, it will agree with the ITR cache. Hence, the PC 
that starts a trace at a natural trace boundary represents 
a vulnerability of the ITR cache, and needs other 
means of protection. For natural trace boundaries 
caused by branches, substantial protection of the PC 
already exists, because the execution unit checks 
branch targets predicted by the fetch unit. For natural 
trace boundaries caused by the maximum trace length, 
protection of the PC is possible by adding a simple 
commit PC and asserting that a committing 
instruction’s PC matches the commit PC. The commit 
PC is updated as follows. Sequential committing 
instructions add their length (which can be recorded at 
decode for variable-length ISAs) to the commit PC and 
branches update the commit PC with their calculated 
PC. Comparing a committing instruction’s PC with the 
commit PC will detect a discontinuity between two 
otherwise sequential traces. As part of future work, we 
plan to comprehensively study PC related fault 
scenarios to identify other potential vulnerabilities and 
devise robust solutions. 
 
3. The ITR cache design space 

As noted in Section 2.3, evictions of unreferenced 
lines from the ITR cache cause a loss in fault detection 
coverage, and misses in the ITR cache cause a loss in 
fault recovery coverage. In this section, we try 
different ITR cache configurations and measure the 
loss in fault detection coverage and fault recovery 
coverage for each design point. Loss in coverage is 
measured by noting the number of instructions in 
vulnerable traces. 

For experiments, we ran SPEC2K integer and 
floating point benchmarks compiled with the 
Simplescalar gcc compiler for the PISA ISA [14]. The 
compiler optimization level is –O3. Reference inputs 
are used. In our runs, we skip 900 million instructions 
and simulate 200 million instructions. 



 

Two ITR cache parameters are varied, (1) 
Associativity: direct mapped (dm), 2-way, 4-way, 8-
way, 16-way and fully associative (fa), and (2) Cache 
size: 256, 512 and 1024 signatures. Figure 6 shows the 
loss in fault detection coverage and Figure 7 shows the 
loss in fault recovery coverage for the various cache 
configurations. For a given associativity, a smaller 
cache increases the number of evictions of 
unreferenced ITR signatures and the number of ITR 
cache misses. The corresponding increase in coverage 
loss is shown stacked for the various cache sizes. 

Bzip, gzip, art, mgrid and wupwise have negligible 
coverage loss for all ITR cache configurations. For 
clarity, they are not included in the graphs. Their 
excellent ITR cache behavior can be explained by 
referring back to Figure 3 and Figure 4, which 
characterize ITR in benchmarks. In these benchmarks, 
traces repeat in close proximity and such traces 
contribute to nearly all the dynamic instructions. 

In fact, coverage loss for all benchmarks correlates 
with their characteristics in Figure 3 and Figure 4. In 
perl and vortex, traces that repeat far apart contribute 
to a large number of dynamic instructions. 
Correspondingly, they have the highest loss in fault 
coverage. Cache capacity has a big impact on 
mitigating this loss. For example, in vortex, for a 
direct-mapped cache, increasing the cache capacity to 
1024 signatures from 256 signatures decreases the loss 
in fault detection coverage to 12% from 33%.  

Gcc, twolf and apsi also have a notable number of 
traces that repeat far apart, and experience a loss in 
fault coverage. They also benefit significantly from 
increasing the cache capacity. For insight, we refer to 
Table 1. It shows the total number of static traces for 
all benchmarks. Notice for vortex and perl, the number 
of static traces (2,655 and 1,704) is higher than the 
capacity of all the ITR caches simulated. Their poor 
trace proximity exposes this capacity problem. Far-
apart repeating traces get evicted before they are 
accessed again, leading to a notable loss in fault 
coverage. Increasing the cache capacity somewhat 
makes up for the poor proximity and, hence, has a big 
impact on reducing coverage loss. Gcc confirms our 
hypothesis that proximity amongst traces is a strong 
factor. Even though it has far more traces than vortex 
and perl (24,017), it has lower coverage loss for a 
given cache configuration as a result of its better trace 
proximity. Mgrid is another example. It has negligible 
coverage loss for all ITR cache configurations even 
though it has a relatively high number of static traces 
(798). Again, proximity amongst its traces is excellent. 
The remaining benchmarks have a small loss in fault 
coverage which can be overcome with bigger caches or 
higher associativity. 

Table 1. Number of static traces for SPEC. 

 

SPECInt #static
bzip 283
gap 696
gcc 24017
gzip 291
parser 865
perl 1704
twolf 481
vortex 2655
vpr 292      

SPECfp #static
applu 282
apsi 1274
art 98
equake 336
mgrid 798
swim 73
wupwise 18  

Note that the loss in fault coverage should not be 
interpreted as a conventional cache miss rate, i.e., it 
does not correspond to signatures that missed on 
accessing the ITR cache. Firstly, the loss in fault 
detection coverage (Figure 6) corresponds to 
signatures that were evicted from the ITR cache before 
being referenced. Secondly, both the loss in fault 
detection coverage and the loss in fault recovery 
coverage are influenced by the number of instructions 
in signatures, which is not uniform across all 
signatures. These factors may explain why, in some 
benchmarks, higher associativity sometimes happens 
to show slightly higher loss in fault coverage than 
lower associativity. 

An important point is that the loss in fault detection 
coverage is significantly lesser than the loss in fault 
recovery coverage for all benchmarks. This is because 
all ITR cache misses lead to a loss in recovery 
coverage, but only those missed traces that are then 
evicted before being referenced lead to a loss in 
detection coverage. 

Across all benchmarks, for a 2-way associative 
cache with 1024 signatures, the average loss in fault 
detection coverage is 1.3% with a maximum loss of 
8.2% for vortex. The corresponding numbers for loss 
in fault recovery coverage are 2.5% average and 15% 
maximum for vortex. 

In general, programs with less repetition or greater 
distance between repeated traces would have a higher 
loss in fault coverage. One possible solution to 
mitigate this is to redundantly fetch and decode traces 
only on a miss in the ITR cache, still achieving the 
benefits of ITR but falling back on conventional time 
redundancy when inherent time redundancy fails. After 
the signature of the re-fetched trace is checked against 
the ITR cache, instructions in that trace are discarded 
from the pipeline. Another possible solution is to have 
a fully duplicated frontend, like in the IBM S/390 G5 
processor [4], but use the ITR cache to guide when the 
space redundancy should be exercised (for significant 
power savings). The use of ITR as a filter for 
selectively exercising time redundancy or space 
redundancy is an interesting direction we want to 
explore in future research. 
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Figure 6. Loss in fault detection coverage. 
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Figure 7. Loss in fault recovery coverage. 

4. Fault injection experiments 
We perform fault injection on a detailed cycle-level 

simulator that models a microarchitecture similar to the 
MIPS R10K processor [5]. 

For each benchmark, one thousand faults are 
randomly injected on the decode signals from Table 2. 
Injecting a fault involves flipping a randomly selected 
bit. A separate “golden” (fault-free) simulator is run in 
parallel with the faulty simulator. When an instruction 
is committed to the architectural state in the faulty 
simulator, it is compared with its golden counterpart to 
determine whether or not the architectural state is 
being corrupted. Any fault that leads to corruption of 
architectural state is classified as a potential silent data 
corruption (SDC) fault. Likewise, if no corruption of 
architectural state is observed for a set period of time 

after a fault  is injected (the observation window),  it is 
classified as a masked fault. In this study, we use an 
observation window of one million cycles. 

An injected fault may lead to one of six possible 
outcomes, depending on (1) whether the fault is 
detected by an ITR check (“ITR”) or undetected within 
the scope of the observation window (“MayITR”)1 or 
undetected for sure (“Undet”), and (2) whether the 
fault corrupts architectural state (“SDC”) or not 
(“Mask”). Based on this, the six possible outcomes are 
ITR+SDC, ITR+Mask, MayITR+SDC, 
MayITR+Mask, Undet+SDC, and Undet+Mask. 

                                                           
1 A fault may not get detected within the scope of the observation 
window, but its corresponding faulty signature may still be in the 
ITR cache. In this case, it is possible that the fault will be detected by 
ITR in the future, but we would have to extend the observation 
window to confirm this. 
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Table 2. List of decode signals. 
Field Description Width

opcode instruction opcode 8

flags

decoded control flags (is_int, is_fp, 
is_signed/unsigned, is_branch, is_uncond, 
is_ld, is_st, mem_left/right, is_RR, 
is_disp, is_direct, is_trap)

12

shamt shift amount 5
rsrc1 source register operand 5
rsrc2 source register operand 5
rdst destination register operand 5
lat execution latency 2

imm immediate 16
num_rsrc number of source operands 2
num_rdst number of destination operands 1
mem_size size of memory word 3

Total width 64  
We further qualify ITR+SDC outcomes with the 

possibility of recovery (ITR+SDC+R) or only 
detection (ITR+SDC+D). On detecting a fault through 
ITR, if the signature accessing the ITR cache is faulty 
as opposed to the signature within the cache, then, the 
fault is recoverable by flushing the ROB (discussed in 
Section 2.3). 

We add two more fault checks to support our 
experiments. A watchdog timer check (wdog) is added 
to detect deadlocks caused by some faults (e.g., faulty 
source registers). A sequential-PC check (spc) is added 
at retirement (discussed in Section 2.5) to detect faults 
pertaining to control flow. 

In the following experiments, we use a two-way 
set-associative ITR cache holding 1024 signatures. The 
breakdown of fault injection outcomes is shown in 
Figure 8. We show fault injection results for the same 
set of SPEC benchmarks whose coverage results are 
reported in Section 3. As seen, a large percentage of 
injected faults are detected through the ITR cache 
(95.4% on average). On average, 32% of the injected 
faults are detected and recovered by ITR that would 
have otherwise led to a SDC (ITR+SDC+R). Only a 
small percentage (1% on average) of SDC faults 
detected through ITR is not recoverable 
(ITR+SDC+D). A large percentage of faults that are 
detected by ITR happen to get masked (59.4% on 
average). When a fault is injected on a decode signal 
that is not relevant to the instruction being decoded or 
does not lead to an error (e.g., increasing lat, the 
execution latency, only delays wakeup of dependent 
instructions), then the fault gets masked, but the 
signature is faulty and gets detected by the ITR cache. 
A noticeable fraction of faults (3% on average) are 
detected and recovered by ITR that would have 
otherwise led to a deadlock (ITR+wdog+R), 
highlighting another important benefit. 

The fraction of faults undetected by ITR within the 
observation window (MayITR+*) is negligible. This 

indicates that a one million cycle observation window 
is sufficient. 

Interestingly, the sequential PC check detected a 
small fraction of faults (0.1% on average) that ITR 
alone could not detect (spc+SDC). The sequential-PC 
check mainly detected faults on the is_branch control 
flag, which indicates whether or not an instruction is a 
conditional branch. Consider the following fault 
scenario. Suppose that the fetch unit predicts an 
instruction to be a conditional branch (BTB hit signals 
a conditional branch and gshare predicts taken). 
Suppose the instruction is truly a conditional branch 
(BTB correct) and is actually not taken (gshare 
incorrect). Then suppose that a fault causes is_branch 
to be false instead of true. First, this fault causes a 
SDC because the branch misprediction will not be 
repaired. Second, because is_branch is false, the 
retirement PC is updated in a sequential way. The spc 
check will fire in this case, because the next retiring 
instruction is not sequential. Note that if the prediction 
was correct (actually taken), the spc check still fires, 
but this is a masked rather than SDC fault. 

On average, 4.5% of injected faults go undetected 
by ITR. Only about 2.6% of the faults lead to SDC and 
are not detected by ITR (Undet+SDC). A very small 
fraction of faults (0.1% on average) lead to a deadlock 
that is not detected by ITR but is caught by the 
watchdog timer. The remaining undetected faults are 
masked (on average, 1.8% of all faults). 
 
5. Area and power comparisons 

Structural duplication can be used to protect the 
fetch and decode units of the processor. In the IBM 
S/390 G5 processor [4], the I-unit, comprised of the 
fetch and decode units, is duplicated and signals from 
the two units are compared to detect transient faults. 
However, this direct approach has significant area and 
power overheads. We attempt to compare the area and 
power overhead of the ITR cache with that of the I-
unit, to see whether or not the ITR-based approach is 
attractive compared to straightforward duplication. The 
die photo of the IBM S/390 G5 provides the area of the 
I-unit [4]. To estimate the area of the ITR cache, a 
structure is selected from the die photo that is similar 
in configuration to the ITR cache. The branch target 
buffer (BTB) of the G5 has a configuration similar to 
the ITR cache: 2048 entries, 2-way associative, 35 bits 
per entry [15]. Based on the decode signals in Table 2, 
the size of the ITR signature is 64 bits. Though each 
ITR entry is almost twice as wide as the G5’s BTB 
entry, only half as many entries as the BTB (1024 
entries) are needed for good coverage, from results in 
Section 3 and Section 4. 
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Figure 8. Fault injection results. 

The area of the I-unit from the die photo is 1.5 cm x 
1.4 cm, i.e., 2.1 cm2. The area of the ITR-cache like 
BTB structure from the die photo is 1.5 cm x 0.2 cm, 
i.e., 0.3 cm2. The ITR cache is about one seventh the 
area of the I-unit. Hence, the ITR-based approach to 
protect the frontend is more area-effective than 
structural duplication of the entire I-unit. 

We next try to find the power-effectiveness of the 
ITR approach. A major power overhead of structural 
duplication and conventional time redundancy is that 
of fetching an instruction twice from the instruction 
cache. We model power consumption by measuring 
the number of accesses to the ITR cache and the 
instruction cache of the processor. Both cache models 
are fed into CACTI [17] to obtain the energy 
consumption per access. Multiplying the number of 
accesses with the energy consumed per access gives us 
the energy consumption. 

Due to lack of information on the instruction cache 
configuration of the IBM S/390 G5, we chose the 
instruction cache of the IBM Power4 [16]. The 
configuration of the Power4 I-cache is: 64KB, direct-
mapped, 128 byte line and one read/write port. The 
configuration of the ITR cache is: 8KB (1024 entries), 
2-way associative, 8 byte line, and one read/write port 
(or one read and one write port). We chose the 0.18 
micron technology used in the IBM Power4. 

The CACTI numbers were: 0.87 nJ per access for 
the I-cache, 0.58 nJ per access (or 0.84 nJ for separate 
read and write ports) for the ITR cache. Overall energy 
consumption is shown in Figure 9. As seen, the ITR-
based approach is far more energy efficient than 
fetching twice from the instruction cache. Note that the 

energy savings will be even greater if also considering 
the redundant decoding of instructions in the frontend 
in the case of structural duplication or traditional time 
redundancy. 
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Figure 9. Energy of ITR cache vs. I-cache. 

We see that the ITR cache is more cost-effective 
than straightforward space redundancy in the IBM 
mainframe processor [4]. However, it should be noted 
that complete structural duplication provides more 
robust fault tolerance than the ITR cache. They are two 
different design points in the cost/coverage spectrum. 
 
6. Related work 

Prior research on exploiting program repetition has 
focused on reusing previous instruction results through 
a reuse buffer to reduce the total number of 
instructions executed [1][2]. Instruction reuse has also 
been used to reduce the number of redundant 
instructions executed in a time-redundant execution 
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model [8]. In the latter work, the goal was to reduce 
function unit pressure. Instead of executing two copies 
of an instruction using two function units, in some 
cases it is possible to execute one copy using a 
function unit and the other copy using a reuse buffer. 
ITR reduces pressure in the fetch and decode units, 
whereas their approach requires fetching and decoding 
all instructions twice. In other words, their approach 
only addresses the execution stage and is an orthogonal 
technique that could be used in an overall fault 
tolerance regimen. 

Amongst the several proposals to reduce overheads 
of full-redundant execution, using ITR to protect the 
fetch and decode units could improve approaches that 
either do not offer protection to the frontend [9][12], or 
trade performance for protection by using traditional 
time-redundancy in the frontend [10][11]. In general, 
frontend bandwidth is pricier than execution 
bandwidth. By using ITR to protect the frontend, 
traditional time-redundancy can be focused on 
exploiting idle execution bandwidth [10][11][12][13]. 

ITR-based fault checks augment the suite of fault 
checks available to processor designers. Developing 
such a regimen of fault checks to protect the processor 
(e.g., [3]) will lead to low-overhead fault tolerance 
solutions compared to more expensive space 
redundancy or time redundancy approaches. 
 
7. Summary 

We introduced a new approach to develop low-
overhead fault checks for a processor, based on 
inherent time redundancy (ITR) in programs. We 
proposed the ITR cache to store microarchitectural 
events that depend only upon program instructions. 
We demonstrated its effectiveness by developing 
microarchitectural support to protect the fetch and 
decode units of the processor. We gave insights on 
diagnosing a fault to determine the correct recovery 
procedure. We quantified fault detection coverage and 
fault recovery coverage obtained for a given ITR cache 
configuration. Finally, we showed that using the ITR-
based approach is more favorable than costly structural 
duplication and traditional time redundancy.  
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