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ABSTRACT 
Branches that depend directly or indirectly on load instructions are a 
leading cause of mispredictions by state-of-the-art branch predictors. 
For a branch of this type, there is a unique dynamic instance of the 
branch for each unique combination of producer-load addresses. 
Based on this definition, a study of mispredictions reveals two 
related problems: 
(i) Global branch history often fails to distinguish between different 
dynamic branches. In this case, the predictor is unable to specialize 
predictions for different dynamic branches, causing mispredictions if 
their outcomes differ. Ideally, the remedy is to predict a dynamic 
branch using its program counter (PC) and the addresses of its 
producer loads, since this context uniquely identifies the dynamic 
branch. We call this context the identity, or ID, of the dynamic 
branch. In general, producer loads are unlikely to have generated 
their addresses when the dynamic branch is fetched. We show that 
the ID of a distant retired branch in the global branch stream 
combined with recent global branch history, is effective context for 
predicting the current branch. 
(ii) Fixing the first problem exposes another problem. A store to an 
address on which a dynamic branch depends may flip its outcome 
when it is next encountered. With conventional passive updates, the 
branch suffers a misprediction before the predictor is retrained. We 
propose that stores to the memory addresses on which a dynamic 
branch depends, directly update its prediction in the predictor. This 
novel “active update” concept avoids mispredictions that are 
otherwise incurred by conventional passive training. 
We highlight two practical features that enable large EXACT 
predictors: the prediction path is scalably pipelinable by virtue of its 
decoupled indexing strategy, and active updates are tolerant of 100s 
of cycles of latency making it ideal for virtualizing this component 
in the general-purpose memory hierarchy. We also present a 
compact form of the predictor that caches only dynamic instances of 
a static branch that differ from its overall bias. 

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles — 
pipeline processors 

General Terms: Design, Performance. 

Keywords 
branch prediction, superscalar processors, microarchitecture 

1. INTRODUCTION 
The important trend of placing multiple cores on a single chip has 
apparently shifted the research spotlight away from high-
performance processor architectures and instruction-level 
parallelism, to chip-level architectures and thread-level parallelism. 
In reality, the diversity across and within workloads is too great to 
exclude either approach. Microprocessor companies continue to 
develop flagship high-performance cores (e.g., AMD’s K10 and 
Intel’s Nehalem), even placing two, four, or more of these large 
cores on a single chip. Looking forward, a compelling strategy is to 
include a robust mix of core types in an Asymmetric Chip 
Multiprocessor (ACMP), e.g., several flagship large cores and many 
simple cores, to support both low latency and high throughput 
[9][12][16][23]. Low latency is critical for serial workloads and 
serial regions of parallel workloads. 

Continued microarchitecture performance scaling is hindered by 
many factors. One factor above all, the branch prediction bottleneck, 
constrains the ability to tackle other factors: the lookahead capability 
afforded by branch prediction exposes instruction-level parallelism 
(ILP) for combating data dependences and memory latency or acts 
as a catalyst for other speculative techniques aimed at extracting 
more ILP [5]. 

Today’s best known branch predictors push the envelope of what is 
possible using global branch or path history as context for making 
predictions. While this context is basically the same used by 
precursor predictors since the advent of two-level adaptive branch 
prediction [25], clever combinations and organizations have yielded 
nearly perfect branch prediction on some programs and program 
phases. Yet, results in this paper show that branch history alone 
cannot scale accuracy in other programs beyond 90-95%. In these 
programs, the leading cause of branch mispredictions are branches 
that depend directly or indirectly on load instructions. 

An example of this type of branch is depicted in Figure 1(a). It 
shows a static branch at program counter (PC) Z that depends on 
two static loads at PCs X and Y. At run-time, the static branch 
translates into many different dynamic branches corresponding to 
different combinations of load addresses. Two dynamic instances of 
the branch are shown in Figure 1(b). In the first instance, the two 
load instructions load from addresses A1 and B1, respectively. In 
the second instance, the two load instructions load from addresses 
A2 and B2, respectively. Thus, it is the combination of load 
addresses that distinguishes one dynamic branch from another. More 
generally, a dynamic branch is uniquely identified by the 
combination of its PC and the addresses of loads on which it 
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depends directly or indirectly. We call this combination the identity, 
or ID, of the dynamic branch. The IDs of the two dynamic branches 
in Figure 1(b) are {Z, A1, B1} and {Z, A2, B2}, respectively. 
static load

PC X
static load

PC Y

static branch
PC Z   

dynamic load
PC X

address=A1

dynamic branch
PC Z

ID = {Z, A1, B1}

dynamic load
PC Y

address=B1

dynamic load
PC X

address=A2

dynamic branch
PC Z

ID = {Z, A2, B2}

dynamic load
PC Y

address=B2

 
 (a) (b) 
Figure 1.  (a) A static branch that depends on two static loads. 
(b) Two dynamic instances of the static branch. 

Many state-of-the-art branch predictors [10][11][13][15][18][20] 
exploit global branch history as context for predicting dynamic 
branches. When a static branch’s PC is combined with global 
branch history, the static branch uses multiple prediction table 
entries instead of just one, an entry for each unique global branch 
history pattern preceding the branch. Ideally, this enables 
specializing predictions to different dynamic instances of the static 
branch. For example, for the static branch Z of Figure 1, a particular 
global branch history pattern, P1, may precede dynamic branch {Z, 
A1, B1} and a different pattern, P2, may precede dynamic branch 
{Z, A2, B2}. As shown in Figure 2(a), the two dynamic branches 
access different prediction table entries because they use different 
indices formed from {Z, P1} and {Z, P2}, respectively. This is 
advantageous if the two dynamic branches have different outcomes. 
They each have a dedicated entry in the prediction table for making 
different predictions. In a sense, the goal of combining PC with 
global branch history is to forecast which dynamic branch, i.e., 
which ID, is currently being fetched and to provide a dedicated 
prediction for it. 

Prediction 
Table

prediction for 
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prediction for 
{Z,A1,B1}

hashP2
Z

hashP1
Z

  

Prediction 
Table
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{Z,A2,B2}

hash
P1=P2

Z

 
 (a) (b) 
Figure 2. (a) Good scenario: different dynamic branches access 
different table entries (P1 ≠ P2). (b) Bad scenario: different 
dynamic branches access the same table entry (P1 = P2). 

In Section 2, we diagnose the causes of mispredictions using the 
dynamic-branch framework defined above. We use very large 
versions of the gselect predictor [14][25] and L-TAGE predictor 
[18] (the latter predictor took first place in the most recent 
championship branch prediction [26]). The study reveals two 
problems: 
1) Insufficient specialization. Often, global branch history, even 
very long history (640 bits) as used by some components in L-
TAGE, does not distinguish between two or more dynamic branches. 
If these dynamic branches have different outcomes, some will be 
mispredicted because only a single prediction is available to predict 
all of them. This scenario is depicted in Figure 2(b) for the two 
dynamic branches in our running example. The problem is that the 
same branch history pattern precedes both dynamic branches (P1 = 
P2). 

2) Stores. A store to an address on which a dynamic branch 
depends, may cause its outcome to be different the next time it is 
encountered. In this case, the dynamic branch will be mispredicted 
because its prediction table entry is stale with respect to the updated 
data in memory. The entry is only retrained after the misprediction is 
incurred. 

In theory, the first problem can be addressed by using the dynamic 
branch’s ID as a unique index into the prediction table. In general, 
however, producer loads are unlikely to have generated their 
addresses by the time the dynamic branch is fetched. We show that 
the ID of a distant retired branch in the global branch stream (e.g., 
20+ branches away) combined with recent global branch history, is 
effective context for predicting the current branch. 

To address the second problem, we propose that stores to the 
addresses on which a dynamic branch depends, directly update its 
prediction in the predictor. This novel “active update” concept 
avoids mispredictions that are otherwise incurred by conventional 
passive training. With passive updates, the branch predictor is 
retrained after mispredicting. With active updates, the store updates 
both memory and the branch predictor, avoiding the misprediction 
by actively mirroring memory. 

We call the proposed predictor EXACT, for “EXplicit dynamic-
branch prediction with ACTive updates”. “EX” conveys that 
dynamic branches are explicitly identified so that they can be 
provided dedicated predictions and “ACT” conveys that their 
predictions are actively updated by stores. 

Processor Pipeline
Fetch Retire

Explicit 
Predictor

ID Gen

Default 
Predictor

past ID for predicting current branch

passive updates

stores

active updates

Active 
Update 

Unit

1

2

3  
Figure 3.  High level view of EXACT. 

Figure 3 shows a high level view of EXACT. Instruction fetch is 
directed by a hybrid predictor, comprised of a default history-based 
predictor and an explicit predictor (chooser not shown). As branches 
retire from the processor, their IDs are deduced from producer loads 
that retired before them (ID Gen). As mentioned above, the explicit 
predictor predicts the current branch using the ID of a retired branch 
a fixed distance away (see label 1). The explicit predictor is both 
passively updated (branches’ outcomes are recorded as they retire, 
see label 2) and actively updated. When a store retires from the 
processor, its address and value are converted by an active update 
unit into updates of the explicit predictor (see label 3). Figure 3 
shows how the new predictor is not intrusive to the processor 
pipeline. 

For equal cost, a hybrid gshare+EXACT predictor yields 60%, 30%, 
and 27% fewer mispredictions than gshare alone, for three 
misprediction-heavy benchmarks: bzip2, gzip, and twolf, 
respectively. Similarly, a hybrid L-TAGE+EXACT predictor yields 
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66%, 33%, and 14% fewer mispredictions than L-TAGE alone, for 
bzip2, gzip, and twolf, respectively. 

In general, both the explicit predictor and the active update unit 
need to be large to provide substantial coverage of mispredictions. 
Fortunately, two crucial properties of EXACT make it practical: 
1. The explicit predictor is scalably pipelinable: The problem with 
a large explicit predictor is latency. This component is on the critical 
fetch path and must provide a prediction each clock cycle. A large 
branch predictor can be pipelined in a straightforward way if its next 
index does not depend on immediately preceding predictions 
[10][19]. The explicit predictor can be pipelined because 
consecutive indices – which are derived from retired branches’ IDs 
– are independent from the predictor (refer back to Figure 3). While 
global branch history is optionally included in the index, this is 
easily accommodated by using an abbreviated index to read out a 
row of candidate predictions and post-selecting the finalist at the end 
of the prediction pipeline when the most recent history bits become 
available [10]. 
2. The active update unit is virtualizable: On the other hand, 
latency is not an issue for the active update unit, in fact, this feature 
can actually be exploited to eliminate dedicated storage for this 
component. A key result is that most benchmarks are tolerant of 
400+ cycles of latency to perform active updates, due to the long 
distances between stores and reencounters with branches that they 
update. This is precisely the kind of component that predictor 
virtualization, a technique proposed by Burcea et al. [1], is suited 
for. The idea is to implement a small level one (L1) version of the 
component in dedicated storage, backed by a full version in physical 
memory which can then be transparently cached in higher levels of 
the general-purpose memory hierarchy (e.g., L2 cache). The 
advantages include a substantial reduction in dedicated storage, 
flexible allocation of virtualized active update resources according 
to application characteristics, and persistence of microarchitectural 
state. 

Nevertheless, some designs may favor a small predictor. For 
example, the leap from an unpipelined or moderately pipelined fetch 
unit to a deeply pipelined one may be deemed too great, or the area 
budget for the fetch unit may preclude a large predictor. 
Accordingly, we also present a more compact form of the explicit 
predictor. It takes the form of a small cache, which caches only 
dynamic instances of a static branch that differ from its overall bias. 
Attaching this small cache to an existing predictor improves 
accuracy comparably to scaling the existing predictor, but without 
extending the cycle time appreciably. Adding a 4KB explicit 
predictor cache and 16KB of other overhead (off the critical-path of 
instruction fetch) removes 33% of mispredictions from a 4KB L-
TAGE and 23% of mispredictions from a 8KB L-TAGE. These 
results are comparable to the accuracy of doubling the L-TAGE size, 
but without extending cycle time. 

2. CHARACTERIZING MISPREDICTIONS 
In this section, we characterize mispredictions that escape two 
global history based branch predictors, gselect [14] and L-TAGE 
[18]. We characterized all SPEC2K integer benchmarks but present 
only five of them, for readability. We present benchmarks that have 
a misprediction rate of 3% or higher (with a large L-TAGE 
predictor), namely, bzip2, gzip, parser, twolf, and vpr. The gselect 
predictor has a pattern history table (PHT) of 228 entries and the 
index is formed by concatenating 14 bits of the branch PC with 14 

bits of the global branch history register. The L-TAGE predictor is 
composed of 13 predictor components (a simple bimodal 
component and 12 other partially tagged components) in addition to 
a loop predictor. Similar to gselect, the index for each component is 
formed by concatenating PC bits with a component-specific amount 
of folded global history. A geometric series is used to determine 
global history lengths for each component ranging from 4 bits to 
640 bits. 

We include additional information in every prediction entry purely 
for diagnosing the root causes of mispredictions. Every prediction 
entry is tagged with the ID of the last dynamic branch to have 
updated the prediction entry. (Other diagnosis information will be 
introduced later.) As defined in Section 1, the ID of a dynamic 
branch is the combination of (1) PC of the dynamic branch and (2) 
addresses of loads on which the dynamic branch depends, which we 
will refer to simply as “load addresses”. The current global branch 
history is effective context for predicting a given dynamic branch, if 
the indexed prediction entry is tagged with the dynamic branch’s ID. 

The graphs in Figure 4 show breakdowns of (a) all branches and (b) 
just mispredicted branches, as a percentage of all dynamic branches. 
Each bar is broken down into six components. The “no address” 
component means the dynamic branch either does not depend on 
any loads or its outcome is not determined solely by loads. From 
Figure 4(b), the fact that these dynamic branches contribute a 
relatively small fraction of mispredictions suggests that global 
history is effective context for specializing predictions for non-load-
dependent dynamic branches. Gselect and L-TAGE have equal “no 
address” components because the “no address” component is a 
property of the program. 
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Figure 4. Breakdown of (a) all branches and (b) mispredicted 
branches, as a percentage of all dynamic branches. 
The “entry miss” component corresponds to accessing a prediction 
entry for the first time (cold miss). The “pc mismatch” component 
corresponds to accessing an entry that was last updated by a 
different static branch (conflict miss/aliasing). Both are negligible. 

The “address mismatch” component is of primary interest. In this 
case, the dynamic branch being predicted differs from the dynamic 
branch which last updated the prediction entry. They are different 
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dynamic instances of the same static branch: their PCs match but 
their load addresses differ. The mismatch means global branch 
history fails to distinguish the two dynamic branches, therefore, the 
predictor fails to specialize predictions for them. From Figure 4(a), 
there is an address mismatch in gselect for about 16% (bzip2) to 
61% (twolf) of all branch predictions and in L-TAGE for about 18% 
(bzip2) to 61% (twolf) of all branch predictions. 

An address mismatch does not necessarily mean the branch will be 
mispredicted, since different dynamic branches may have the same 
outcome, only that it is more likely to be mispredicted than if the 
dynamic branch being predicted were the same as the dynamic 
branch which last updated the prediction entry. With the exception 
of bzip2, a large majority of mispredictions is attributed to “address 
mismatch”. Summing up, global branch history does not necessarily 
distinguish among different dynamic instances of the same static 
branch, and this is a leading or major contributor to mispredictions 
in some benchmarks. 

The “value mismatch” component corresponds to the case where the 
dynamic branch being predicted is the same as the dynamic branch 
which last updated the prediction entry (their IDs match), but the 
values at its load addresses were changed by stores since it last 
updated the prediction entry. To detect this case, each prediction 
entry is not only tagged with the ID of the dynamic branch that last 
updated the entry, but also the values contained at its load addresses 
at that time. A value mismatch does not necessarily mean the branch 
will be mispredicted, since different values may lead to the same 
branch outcome, only that it is more likely to be mispredicted than if 
the values had not changed. From Figure 4(b), “value mismatch” is 
not a major cause of mispredictions except in the case of bzip2. 

On the other hand, mispredictions caused by insufficient 
specialization (“address mismatch”) may hide mispredictions that 
would otherwise be caused by stores (“value mismatch”). To 
explore this issue, we use an idealized predictor that explicitly 
identifies dynamic branches and specializes predictions for them. 
The predictor is ideal in two ways. First, its size is unbounded. 
Second, the ID of the dynamic branch is known a priori (at the time 
the branch is predicted). The index is simply the ID of the dynamic 
branch. The explicit predictor is combined with a global history 
based predictor (either gselect or L-TAGE), the latter being used for 
non-load-dependent dynamic branches. 

The graphs in Figure 5 show the breakdown of mispredictions when 
the explicit predictor is combined with (a) gselect and (b) L-TAGE. 
There are three bars for each benchmark. For comparison, the first 
bar (“gselect” or “L-TAGE”) shows mispredictions when only the 
global history based predictor is used (no explicit predictor). The 
second bar combines the explicit predictor (EX) with the global 
history based predictor (“gselect + EX” or “L-TAGE + EX”). The 
“address mismatch” component of mispredictions is zero because 
dynamic branches are now provided with dedicated prediction 
entries. On the other hand, the fraction of mispredictions attributed 
to “value mismatch” is more substantial now. The results with 
gselect and L-TAGE show similar trends. Since L-TAGE is more 
accurate than gselect overall, we focus on the results in Figure 5(b). 
For the “L-TAGE+EX” category, the overall misprediction rate 
increases compared to just using L-TAGE, due to value mismatches 
supplanting address mismatches as the chief source of 
mispredictions. In fact, the “value mismatch” component often 
exceeds the “address mismatch” component that it replaced. There is 
also an increase in the “entry miss” component for gzip and parser, 

indicating that a non-trivial fraction of mispredictions are ultimately 
due to seeing a given dynamic branch ID for the first time; in this 
study, when there is an “entry miss” in the explicit predictor, the 
default predictor is used to make the prediction and we do not 
diagnose the misprediction other than to indicate that it was 
produced by the default predictor. For vpr, entry misses supplant 
address mismatches almost one-for-one. In its SimPoint [21], vpr 
pair-wise compares elements from two large arrays, creating many 
dynamic branch IDs that are visited only once during the SimPoint. 
For bzip2, the “value mismatch” component was the chief source of 
mispredictions originally (“L-TAGE”) and its contribution doubles 
(“L-TAGE + EX”). The third bar in Figure 5 (a) and (b) augments 
the explicit predictor with active updates by store instructions, using 
the active-update implementation described later in the paper 
(“gselect + EXACT” and “L-TAGE + EXACT”). Explicit dynamic-
branch prediction and active updates work in concert to substantially 
reduce the misprediction rate with respect to gselect and L-TAGE. 
From Figure 5(b), bzip2, gzip, and twolf, the three benchmarks 
which experienced the largest increases in “value mismatch” type 
mispredictions, have many of these mispredictions eliminated by 
active updates, for a substantial decrease in the overall misprediction 
rate with respect to L-TAGE. 
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Figure 5.  Combining the idealized explicit dynamic-branch 
predictor with (a) gselect and (b) L-TAGE. 
Overall, Figure 5 shows the potential for dramatic reductions in 
misprediction rates using the two principles of EXACT: explicit 
dynamic-branch prediction (for achieving desired specialization) 
and active updates. Notably, except for bzip2, the two techniques 
are needed in combination: the first technique is needed to eliminate 
mispredictions caused by insufficient specialization, but in doing so, 
the predictor is also more vulnerable to stores that require active 
updates. Bzip2 only requires active updates. 

3. EXACT IMPLEMENTATION 
Figure 6 shows the major components of the EXACT predictor. A 
prediction is supplied by either the default predictor (e.g., L-TAGE) 
or the explicit predictor. The explicit predictor is simply a table of 1-
bit predictions. The chooser classifies static branches as more 
suitable for the default predictor or the explicit predictor. The 
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chooser also singles out static branches that exhibit loop behavior 
and directs an explicit loop predictor to provide a trip-count to the 
fetch unit instead of single prediction. 

Chooser Explicit
Predictor

Explicit 
Loop

Predictor

Default
Predictor

Active 
Update 

Unit

ID 
Generation 

Unit

Global Branch Queue 

GBQ

ID

trip-count T/NT pred.  
Figure 6.  Major components of EXACT. 

All components are passively trained as dynamic branches retire 
from the processor. In addition, both the explicit predictor and the 
explicit loop predictor may be actively updated by the active update 
unit. An active update occurs when a store retires from the 
processor. The ID generation unit observes all instructions as they 
retire from the processor, in order to propagate load addresses (the 
basis for IDs) to branches. When a branch retires, its ID is pushed 
onto the global branch queue (GBQ). The GBQ is used for indexing 
the explicit predictor and explicit loop predictor. 

Sections 3.1 through 3.4 explain ID generation, the GBQ, indexing 
the explicit predictor, and pipelining the explicit predictor. The 
explicit loop predictor, chooser, and active update unit are explained 
in Sections 3.5 through 3.7. 

3.1 ID Generation Unit 
A non-functional architectural register file (ARF) propagates 
addresses of loads to branches that depend on them directly or 
indirectly. In this paper, each logical register in the ARF holds up to 
four load addresses. Loads write their addresses into their 
destination registers when they retire from the load queue. ALU 
instructions propagate addresses from their source registers to their 
destination registers when they retire from the reorder buffer. 
Branches obtain their load addresses from their source registers 
when they retire from the reorder buffer. 

To handle registers that are spilled to the stack, we augment the 
ARF with a small fully-associative cache, called a stack cache. We 
use a 32-entry stack cache in this paper. Like the ARF, a stack cache 
entry contains up to four addresses but it is also tagged with a stack 
address to check for stack-store and stack-load hits. A stack-store 
copies the addresses contained in its source register from the ARF to 
the stack cache. If a stack-load hits in the stack cache, the addresses 
are copied from the stack cache to the stack-load’s destination 
register in the ARF. In summary, load addresses are propagated to 
branches through both registers and the stack. 

A dynamic branch forms its ID by hashing its PC and load addresses 
together, as follows. The first address is XORed with the second 
address shifted left by one bit, the third address shifted left by two 
bits, and so on, for as many load addresses as there are. The result is 
then ANDed with a mask to extract the low N bits, for an explicit 
predictor that has 2N entries. The upper 8 bits of the result is XORed 
with the lower 8 bits of the PC. 

3.2 Global Branch Queue 
The GBQ contains IDs of recently retired dynamic branches. When 
a dynamic branch retires, the ID generation unit pushes its ID onto 
the GBQ, displacing the oldest ID in the GBQ. GBQ length is 
discussed in the next section. 

3.3 Indexing the Explicit Predictor 
We cannot use the ID of a dynamic branch to index the explicit 
predictor for two reasons. First, typically, its producer loads have 
not generated their addresses by the time it is fetched. Second, even 
if addresses were available in time to predict the branch, assembling 
and associating them with the branch currently being fetched is 
challenging, whereas the ID generation unit does this 
straightforwardly when the branch itself retires. 

Instead, the index for a branch is based on the ID of a prior retired 
branch some fixed distance away. The rationale for this approach is 
that there is repetition in the global sequence of dynamic branches 
(IDs), due to the program iterating and reiterating over data 
structures. The chosen distance determines the length of the GBQ. 
The approach is illustrated in Figure 7 for three scenarios and a 
distance of 20. The three scenarios differ in how many unretired 
branches are currently in the processor pipeline, affecting which 
branch in the GBQ is used to predict the new branch. The third 
scenario shows what happens when the distance between the new 
branch and the youngest retired branch in the GBQ is greater than 
the fixed distance, 20. The problem is that the new branch needs the 
ID of a branch which has not yet retired. It cannot form an index 
into the explicit predictor and must use the default predictor instead. 
KEY

retired branch (GBQ entry)

unretired branch

new branch

Branches in GBQ Branches in Processor Pipeline

??

Scenario #1

Scenario #2

Scenario #3

 
Figure 7.  The index for a branch is based on a prior branch’s ID 
some fixed distance away (20 in this example). 
This indexing strategy is tantamount to predicting the ID of the 
current branch from the ID of a distant prior branch. A given ID 
may lead to any of a number of IDs downstream from it, depending 
on intervening control-flow (among other things). This is 
corroborated by our studies which show that hashing the ID of the 
distant prior branch with global branch history is essential for more 
closely approximating using the ID of the current branch. We have 
observed a few exceptions to this general rule. In these exceptional 
cases, including global branch history may be detrimental because it 
creates redundant entries in the explicit predictor which has two 
negative effects: thrashing the predictor and needlessly increasing 
training time. We concluded that global branch history should be 
used for some branches and not others. To this end, the chooser – in 
addition to selecting among the default predictor, explicit predictor, 
and explicit loop predictor – identifies branches whose indices into 
the explicit predictor should not include global branch history. 
When global branch history is included in the index, it is hashed 
into the low bits of the ID of the distant prior branch. 

Figure 8 shows the effect of distance, for two cases: (a) the prior 
branch whose ID is used for the index is assumed to be retired 
regardless of distance (i.e., never suffer scenario #3), and (b) 
whether or not the prior branch is retired is determined through 
cycle-level processor simulation (may suffer scenario #3). 
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A distance of 0 means the branch being predicted uses its own ID. 
For case (a), this yields the lowest misprediction rate but is based on 
the flawed assumption that its ID is available. Case (b) shows the 
highest misprediction rate for distance 0 because the default 
predictor is used almost exclusively. Case (a) shows increasing 
misprediction rate with distance, with gzip and twolf showing large 
jumps between distance 0 and 1. This transition is effectively the 
gap between ideal and real index prediction. Subsequently, 
misprediction rate increases gradually with increasing distance. Case 
(b) shows decreasing misprediction rate with distance since 
increasing distance increases the number of branches predicted by 
the explicit predictor. Cases (a) and (b) converge in the low to mid 
20s for gzip and twolf. 
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(b) 

Figure 8.  Effect of distance. (a) Prior branch is always retired. 
(b) Retired status based on processor simulation. 

3.4 Pipelining the Explicit Predictor 
The explicit predictor is straightforwardly pipelinable because 
consecutive indices are independent of pending accesses. This is 
illustrated in Figure 9 for a three-cycle prediction latency. 

++

++

++

GBQ

ID1 +
BHR

ID2 +
BHR

ID3 +
BHR

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 CYCLE 6 CYCLE 7

 
Figure 9.  Pipelining the explicit predictor. Diagram shows three 
consecutive accesses to a three-cycle-latency predictor. 
The indices for the first, second, and third accesses are derived from 
a first ID (ID1), a second ID (ID2), and a third ID (ID3) in the GBQ. 
Thus, the second access may begin in the second cycle even though 
the first access is pending, and the third access may begin in the 
third cycle even though the first and second accesses are pending. 
Global branch history may be included in the index. The most recent 
B bits of global history (two bits in our example) are unavailable, 

however, because they have yet to be produced by preceding 
pending accesses. This is easily handled by using an abbreviated 
index that excludes the B unknown bits, reading out a row of 2B 
candidate predictions, and post-selecting one prediction from among 
the candidate predictions using the late-arriving B bits at the end of 
the prediction pipeline [10]. In the example of Figure 9, notice that 
two bits of both the ID and BHR are omitted from the index, a row 
of four predictions is read out, and then the missing two index bits 
are generated at the end of the prediction pipeline (by which time 
the preceding pending accesses have produced their predictions), 
which control the MUX. 

3.5 Explicit Loop Predictor 
Some loops have trip-counts that depend on one or more loads 
preceding the loop. Applying the same static vs. dynamic framework 
defined in the introduction, we say that a static trip-count translates 
into multiple dynamic trip-counts at run-time. Like a dynamic 
branch, a dynamic trip-count has an identity (ID) as a whole: the PC 
of the loop branch combined with the addresses of loads that the 
dynamic trip-count depends on. Different dynamic trip-counts are 
distinguished by their IDs. The role of the explicit loop predictor is 
to provide specialized trip-count predictions to different dynamic 
trip-counts, analogous to the role of the explicit predictor for 
dynamic branches. 

The explicit loop predictor is accessed using the same index as the 
explicit predictor (Section 3.3). The explicit loop predictor is 
managed as a set-associative cache, however, so it can have fewer 
entries yet still use the full-length indices. The low bits of the index 
selects a set. Entries within the set are tagged with the remaining 
high bits of the index. An entry is shown in Figure 10. 

tag trip-countvalid bit LRU bits
cache management payload

 
Figure 10.  A single entry in the explicit loop predictor. 

Dynamic trip-counts are identified as follows. When a backward 
branch is retired, successive instances of the branch are examined 
for signature behavior: (1) the branch is taken multiple times in a 
row followed by a not-taken outcome, thus determining the trip-
count value, and (2) all of these dynamic instances of the branch 
have the same ID. They inherit the same ID because they all test a 
load-dependent trip-count that was preset outside the loop. It is 
interesting to note that, without the explicit loop predictor, the 
explicit predictor alone would be incapable of predicting the 
dynamic instance that exits the loop since all instances have the 
same ID (no specialization). Encoding the trip-count (i.e., bundling 
all iterations into a single prediction) not only provides the 
immediate benefit of predicting the exit like other loop predictors 
[4], but also some unprecedented benefits such as (1) explicitly 
specializing the trip-count for different dynamic data structures and 
(2) actively-updating the trip-count when these data structures are 
modified by stores. 

3.6 Chooser 
The chooser has three jobs: 1) identify branches that are best 
predicted by the default predictor (§3.6.1), 2) identify branches that 
exhibit dynamic trip-counts, hence, are best predicted by the explicit 
loop predictor if it hits or the default predictor otherwise (§3.6.2), 
and 3) identify branches that do not need global branch history 
included in their indices (§3.6.3). 
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The chooser is PC-indexed and is not tagged. Thus, classification is 
on a per-static-branch basis. This is not only efficient in terms of 
storage but it also enables rapid classification since all dynamic 
instances of a static branch train its entry. 

3.6.1 Choosing the Default Predictor 
Training for this decision occurs in two phases. The first phase is a 
brief warm-up period during which both the explicit predictor and 
default predictor are trained for all branches (explicit predictor is not 
trained for non-load-dependent branches (ID=PC), however). The 
fetch unit uses predictions solely from the default predictor during 
the first phase since the chooser is not yet trained. In the second 
phase, the fetch unit switches to using predictions from the explicit 
predictor (except for non-load-dependent branches). Meanwhile, 
training of the chooser proceeds by comparing the ability of the two 
predictors to predict branches. A chooser entry has a saturating 
counter and a sticky bit for this purpose. The counter is incremented 
when the default and explicit predictors are correct and incorrect, 
respectively; decremented when the default and explicit predictors 
are incorrect and correct, respectively; and unchanged when both 
predictors are correct or incorrect. If the counter saturates, the sticky 
bit is set. A sticky bit of 1 signifies that the default predictor should 
be used for all dynamic instances of the static branch. Crucially, 
dynamic instances of this static branch no longer participate in 
training the explicit predictor or active update unit, dedicating these 
important resources to more suitable branches. 

Certain load-dependent branches are best left for the default 
predictor for two reasons. First, the indexing strategy may not be 
accurate for these branches. Recall that this strategy is tantamount to 
inferring the current branch’s ID from a previous branch’s ID, a 
form of address prediction. This may be inaccurate for some 
branches and they should be weeded out. Second, there may be 
thrashing in the explicit predictor: explicitly mirroring memory is a 
worthy cause but requires sufficient predictor capacity, and off-
loading some branches to the default predictor may be necessary. 

3.6.2 Choosing the Explicit Loop Predictor 
Section 3.5 explained how a dynamic trip-count is detected at 
retirement and how this causes it to be cached in the explicit loop 
predictor. At the same time, using the PC of the corresponding 
branch to index the chooser, a sticky bit is set to 1 to indicate that 
this branch should use the explicit loop predictor if it hits and the 
default predictor otherwise. If it misses in the explicit loop predictor, 
the explicit predictor is no better than the default predictor (and 
maybe worse) since all dynamic instances of the branch have the 
same ID and predictions cannot be specialized for them individually 
(discussed at length in §3.5). 

3.6.3 Declining Global Branch History 
The rationale for including global branch history in the index is that 
a given ID may lead to any of a number of different IDs downstream 
from it, depending on intervening control-flow. It is unnecessary, 
however, if a given ID always leads to the same ID downstream 
from it. We add a small set-associative cache to detect one scenario 
or the other (different IDs vs. same ID downstream). It is indexed by 
ID and the entry contains the previously observed downstream ID. 
The next time the ID is encountered, if its downstream ID differs 
from the previously observed downstream ID, then a counter in the 
chooser (that of the downstream branch’s PC) is incremented, 
otherwise, it is decremented. If the counter saturates at its maximum 
value, a sticky bit is set indicating to always use global history in the 

index for the downstream branch. If the counter saturates at its 
minimum value, a different sticky bit is set indicating to always omit 
global history from the index of the downstream branch. 

3.6.4 Summary of Chooser Contents 
Figure 11 summarizes the contents of the two structures in the 
overall chooser unit. Fields are also annotated with the relevant 
sections where they were explained. 

C1 SB1

C: counter
SB: sticky bit

§ 3.6.1

SB2

§ 3.6.2

C2 SB3 SB4

Chooser Entry Sampled Downstream ID Cache

tag prev. downstream IDvalid bit

§ 3.6.3

 
Figure 11.  Summary of chooser contents. 

3.7 Active Update Unit 
Implementing active updates requires two mechanisms. The first 
mechanism determines which dynamic branches in the explicit 
predictor and loop predictor are affected by the store. This process is 
called store address conversion because the store address is 
converted into affected predictor indices. The second mechanism 
determines the impact that the store value will have on these 
dynamic branches in the future. This process is called store value 
conversion, i.e., converting the value into branch outcomes. 

3.7.1 Store Address Conversion 

3.7.1.1 Overview 
Branches that depend on a single load and branches that depend on 
multiple loads use different structures for store address conversion, 
to optimize total cost. Store address conversion – and how it 
interacts with store value conversion and the predictor – is shown in 
Figure 12 (a) and (b) for single-address and multiple-address 
branches, respectively. 
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(b) for multiple-address branches 

Figure 12.  Store address conversion, and its interaction with 
store value conversion and the predictor. 
For single-address branches (Figure 12a), the Single-Address 
Conversion Table (SACT) outputs two pieces of information for 
each dynamic branch that depends on the address being stored to: 
(1) the branch’s index in the predictor and (2) the PC of the branch. 
Store value conversion is based on a novel form of a reuse table [22] 
which produces a new branch outcome or trip-count using only the 
branch’s PC and the store value. The only value needed is that of the 
store because the branch depends on only one load. The predictor 
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can now be actively updated using the branch’s index and new 
outcome or trip-count. 

The picture is almost identical for multiple-address branches (Figure 
12b), with a key difference. The store value alone is not enough to 
infer the new branch outcome or trip-count because the branch also 
depends on the current values at its other addresses (those not being 
stored to). Thus, the Multiple-Address Conversion Table (MACT), 
actually composed of two structures MACT-A and MACT-B, 
outputs two additional pieces of information: (1) the values at all 
addresses on which the branch depends, called the value-combo, 
and (2) which value in the value-combo is being updated by the 
store, called the position. We have determined that the low 16 bits 
of values suffice. Thus, the value-combo is the concatenation of up 
to four 16-bit values. The old value-combo is updated by the store 
and this new value-combo as a whole is the input to store value 
conversion. 

The SACT and MACT are passively trained as dynamic branches 
retire, by the ID generation unit. Training value-combos requires 
that the ARF and stack cache not only propagate loads’ addresses, 
but the low 16 bits of their values as well. Also, when a retired store 
performs an active update, a side-effect is updating the value-combo 
in the MACT if it exists. 

tag PC, indexV LRU PC, index ...
payloadcache management

SACT

tag addr-hashV LRU position
payloadcache management

MACT-A

tag PC, indexV LRU value-combo
payloadcache management

MACT-B

store 
address

store value  
Figure 13.  SACT, MACT-A, and MACT-B. 

3.7.1.2 SACT 
The SACT is a set-associative cache indexed by the store address. 
The payload of a SACT entry, shown in Figure 13, is a list of {PC, 
index} tuples, one for each dynamic branch that depends on the 
address. 

3.7.1.3 MACT-A and MACT-B 
MACT-A is a set-associative cache indexed by the store address. A 
dynamic branch occupies multiple entries in MACT-A, one for each 
of the addresses it depends on, so that stores to any of the addresses 
can trigger an active update. The payload of a MACT-A entry, 
shown in Figure 13, consists of (1) the hash of the branch’s 
addresses (addr-hash), i.e., the branch’s ID1 excluding its PC, and 
(2) the position of the address (which one of up to four addresses) 
when it was hashed into the ID. The multiple entries occupied by the 
branch, corresponding to its multiple addresses, will all have the 
same addr-hash but a unique position. The addr-hash is used to 
access MACT-B whose payload consists of the other three required 
items, (1) the branch’s PC, (2) the branch’s index, and (3) the value-
combo, as shown in Figure 13. Thus, all of the branch’s MACT-A 
entries point to the same MACT-B entry for these three items. This 
reduces cost. Also, by keeping only a single copy of the value-
combo in MACT-B instead of replicating it in MACT-A, MACT-A 
                                                                 
1 Although more than one dynamic branch may depend on the 

address, accommodating only one suffices. 

entries perceive each other’s updates to the value-combo, which 
helps if there are multiple stores to different addresses before the 
next instance of the branch is encountered. This is simply an issue of 
accuracy and not correctness, however. If one of the branch’s 
MACT-A entries is evicted and there is a store to the evicted entry 
followed by a store to a resident entry before the branch is 
reencountered, a partially stale value-combo (first store not 
included) will be used for the second store’s active update. Again, 
this is only an issue of accuracy. Moreover, flaws are fleeting 
because MACT-A and MACT-B entries are refreshed by passive 
updates. 

3.7.2 Store Value Conversion 
The store value (for single-address branches) or store-updated value-
combo (for multiple-address branches) is converted to a branch 
outcome (non-loop branch) or trip-count (loop branch) using novel 
reuse tables. Both the General Reuse Table (GRT) and Range Reuse 
Table (RRT) are set-associative caches indexed by the branch’s PC. 

A GRT entry records the outcome or trip-count that was observed 
for a given value or value-combo. Each entry can enumerate up to 
16 {value/value-combo, outcome/trip-count} pairs, as shown in 
Figure 14. The reuse test requires a match on the PC and value or 
value-combo. The GRT is general in that it can be used by any type 
of branch: non-loop or loop, single-address or dual-address or 
multiple-address. 

tag 16 {value, outcome/trip-count} pairsV LRU
payloadcache management

GRT

tag NT minV LRU
payloadcache management

RRT NT max T maxT min
 

Figure 14.  GRT and RRT entries. 
The RRT is narrower in scope yet powerful. It can only produce 
taken/not-taken outcomes (non-loop branches only) and is only 
intended for single-address and dual-address branches. An RRT 
entry trains two value ranges: one range that produces a taken 
outcome and one range that produces a not-taken outcome. Using 
ranges has two advantages over enumerating distinct values. First, 
only four values need to be recorded for each static branch 
(maximum and minimum for taken outcomes and maximum and 
minimum for not-taken outcomes) instead of recording every 
distinct value seen by the branch, as shown in Figure 14. Second, an 
active update can be performed even for a value that has not been 
seen by the branch, if it falls within either the taken or not-taken 
ranges. 

For single-address branches, the RRT reuse test checks for a match 
on the PC and for the store value to fall within one of the ranges. 
For dual-address branches, the two 16-bit values in its store-updated 
value-combo are subtracted and the reuse test checks for this result 
to fall within one of the ranges. The intuition behind this heuristic is 
that, often, this type of branch compares two load-dependent values. 

If, while training an RRT entry, one range is updated such that it 
overlaps the other range, the static branch is evicted from the RRT 
and added to the GRT. Its existence in the GRT prevents its further 
use of the RRT. This action adapts to the reality that using ranges 
for the branch is probably unreliable. 
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4. METHODOLOGY 
All results in this paper are based on custom predictor and processor 
simulators derived from the SimpleScalar toolset [2]. Eleven of the 
integer SPEC2K benchmarks were used with reference inputs. We 
compiled these benchmarks to the SimpleScalar PISA instruction set 
using the SimpleScalar gcc-based compiler with –O3 optimization. 
The eon benchmark did not compile. The SimPoint toolset [21] was 
used to locate representative simulation points. The simulator skips 
to the SimPoint minus 10 million instructions, warms up for 10 
million instructions, and then simulates for 100 million instructions. 
Parameters of the modeled processor are shown Table 1. 

Table 1. Microarchitecture parameters. 
L1 I&D Caches 64KB, 4-way, 64B line,  

hit=1 cycle, miss=10 cycles, 32 MHSRs 

L2 Cache Unified, 2MB, 8-way, 128B lines,  
hit=10 cycles, miss=200 cycles, 64 MHSRs 

Reorder Buffer 256 
Issue Queue 64 
Load-Store Queue 64 
Rename Map Checkpoints 16 
Fetch-to-exec. pipe depth 20 stages 
Fetch/Issue/Retire Width 4 instr./cycle 

All results are presented in the context of cycle-level processor 
simulation to model the effect of branch distance in forming the 
predictor’s index. Throughout, the GBQ length is 21, therefore, the 
index is formed using the ID of the 21st branch away. If this branch 
is not yet retired, the default predictor is used. The index includes 
either 0 or 6 bits of global branch history: the chooser guides this 
decision on a per-static branch basis. A warm-up period of 10 
million instructions is used, after which the chooser commences 
training and hybrid prediction is engaged. 

We divide EXACT’s subcomponents into two classes. 
Subcomponents in the first class can be scaled up in size with 
continuing effect on reducing misprediction rate, therefore, these are 
studied in Section 5. They include: (1) the default predictor, (2) the 
explicit predictor, and (3) the SACT component of the active update 
unit. Subcomponents in the second class are no less critical but their 
sizes are not as closely coupled to a program’s large data structures, 
hence, scaling them up has negligible effect. The configurations of 
subcomponents in the second class are fixed and shown in Table 2. 
The configuration of each subcomponent was arrived at by 
unconstraining all other subcomponents and finding the point of 
diminishing returns. The total cost of these fixed subcomponents is 

18.6 – 19.7 KB, depending on N (the number of bits in the ID and 
index). 

5. RESULTS 
5.1 Impact of Real Indexing 
In this section, we measure the impact of real indexing in the context 
of unconstrained resources: the unconstrained gselect and L-TAGE 
predictors of Section 2 and unconstrained EXACT subcomponents. 
Figure 15 shows misprediction rates of each default predictor alone 
(gselect or L-TAGE), each default predictor with ideal-indexed 
EXACT, and each default predictor with real-indexed EXACT. 
Ideal indexing is where the ID of the branch is used. Real indexing 
is where the ID of the 21st prior branch is used (plus history if 
chosen) if it has been retired. 
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Figure 15.  Misprediction rates with large predictors. 

From Figure 15 and earlier characterizations from Section 2, we 
classify the eleven benchmarks into three categories. The first 
category consists of benchmarks that do not benefit from EXACT, 
either because they already have impressive accuracy (gap, mcf, 
perlbmk, vortex), particularly with L-TAGE, or there is no repetition 
of dynamic branches / IDs (vpr). For these benchmarks, EXACT 
does not improve or appreciably degrade the accuracy for both ideal 
and real indexing. The second category consists of benchmarks that 
have moderate misprediction rates, show some improvement with 
ideal indexing, but very slightly improve or degrade with real 
indexing (crafty, gcc, parser). The third category consists of 
benchmarks that show an impressive reduction in misprediction rate 
with ideal indexing and attain a considerable portion of this 
reduction with real indexing (bzip, gzip, twolf). On average, 
EXACT with ideal indexing removes 44% and 37% of 
mispredictions in gselect and L-TAGE, respectively, while EXACT 
with real indexing removes 26% and 20% in gselect and L-TAGE, 
respectively. 

Table 2.  Fixed-configuration subcomponents. Not included: default predictor, explicit predictor, and SACT. 
Unit Structure # entries / organization Contents per entry Size (KB) 

ARF 67 entries 4 valid bits + 4 20-bit addresses + 4 16-bit values 1.21 ID Generation Unit stack cache 32 entries/fully-assoc 1 valid bit + 5-bit LRU + 20-bit tag + same payload as ARF entry 0.68 
GBQ  21 entries N-bit ID 0.04 – 0.06 
Explicit Loop Pred.  256 entries/8-way assoc 1 valid bit + 3-bit LRU + (N-5)-bit tag + 8-bit trip-count 0.75 – 0.94 

Chooser Table 1024 entries/not tagged 5-bit C1 + 1-bit SB1 + 1-bit SB2 + 9-bit C2 + 1-bit SB3 + 1-bit SB4 2.25 Chooser downstr. ID $ 512 entries/8-way assoc 1 valid bit + (N-6)-bit tag + N-bit prev. downstream ID 1.69 – 2.44 
RRT 128 entries/4-way assoc 1 valid bit + 2-bit LRU + 9-bit tag + 4x16-bit for ranges 1.19 
GRT 32 entries/4-way assoc 1 val. bit + 2-bit LRU + 11-bit tag + 16x64-bit values + 16x8-bit trip-counts 4.55 
MACT-A 512 entries/16-way assoc 1 valid bit + 4-bit LRU + 15-bit tag + 2-bit position + 20-bit addr-hash 2.63 Active Update Unit 

MACT-B 256 entries/16-way assoc 1 val. bit + 4-bit LRU + 16-bit tag + 14-bit PC + N-bit index + 64-bit combo 3.59 – 3.78 
Total cost of fixed subcomponents (does not include default predictor, explicit predictor, and SACT): 18.6 – 19.7 

Notes: 
1. Regarding number of entries in ARF: PISA ISA has 32 integer registers, 32 floating-point registers, and 3 other registers (hi, lo, fcc). 
2. N = # bits in the ID = # bits in the index. N is varied between 16 and 22. This introduces variation in the total cost of the fixed-configuration subcomponents, as shown. 
3. All addresses are truncated to 20 bits after discarding the low 1, 2, or 3 bits for halfwords, words, and doublewords, respectively. Likewise, the addr-hash is 20 bits. When 

N>20, the upper few bits of the ID consists of only PC bits. 
4. All PCs are truncated to 14 bits after discarding the low 3 bits (PISA instructions are 8 bytes). 
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5.2 Impact of Active Update Latency 
In this section, we measure the impact of active update latency in the 
context of the unconstrained gselect+EXACT(real-indexing) from 
the previous section. Figure 16 shows misprediction rate as a 
function of active update latency in increments of 50 cycles. The 
latency is from the cycle that the store retires to the cycle when the 
updated outcome or trip-count is reflected in the explicit predictor or 
loop predictor. The three benchmarks that benefit substantially from 
EXACT are included as well as crafty which mildly benefits. Gzip is 
insensitive to latency. Twolf is very tolerant of latency up to 400 or 
500 cycles. The change in its misprediction rate from 0 to 400 cycles 
is 6.26% to 6.39%. At around 500 cycles, it becomes more sensitive. 
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Figure 16.  Misprediction rate vs. active update latency. 

5.3 Accuracy vs. Storage Budget 
This section provides results for large predictors used in leading-
edge processing cores, where the issue of predictor access latency is 
relieved by means of pipelining. EXACT is a good solution when 
scaling the conventional branch predictor does not provide any 
accuracy improvement. 
The graphs in Figure 17 show misprediction rate as a function of 
cost using the methodology described in Section 4: the 
subcomponents in Table 2 have fixed configurations with a total 
cost around 19KB and only the default predictor, explicit predictor, 
and SACT configurations are varied. For each cost point, resources 
are allocated to these three subcomponents based on design space 
exploration that yields the lowest misprediction rate. With cost 
constrained, we substitute gselect with gshare [14]. The gshare 
index for each cost point (e.g., length of global branch history 
register) is also based on exploration. 

We explore two implementations of the SACT: 
1. The first uses dedicated storage. In this case, the SACT is 
included in the design space exploration (i.e., its size is varied) and 
its entire cost is included in the cost comparison. In Figure 17, grey 
points correspond to the SACT being implemented in dedicated 
storage (labeled gshare+EXACT or L-TAGE+EXACT). 
2. The second uses a small, dedicated L1 SACT combined with a 
larger, virtualized L2 SACT, applying the concept proposed by 

Burcea et al. [1]. Both are fixed in size. The L1 SACT consumes 
10KB of dedicated storage, which is added to the original fixed cost 
of 19KB for an adjusted fixed cost of 29KB. The L2 SACT is 
pinned in physical memory [1]. A whole SACT set is 80 bytes, 
which fits entirely within a single L2 cache block. Thus we align 
SACT sets at block boundaries. We fix the size of the L2 SACT to 
be 512 KB. This cost is not included in the cost comparison, but the 
virtualized L2 SACT contends with the application’s instructions 
and data for L2 cache resources, which is relevant for performance 
results presented in §5.4. In Figure 17, black points correspond to 
the virtualized SACT (labeled as gshare+EXACT (VIRT. SACT) or 
L-TAGE+EXACT (VIRT. SACT)). 
5.3.1 Dedicated Storage for SACT 
The first cost point where L-TAGE+EXACT overtakes L-TAGE is 
40KB for bzip2 (1.8% down from 3.8%), 353KB for gzip (6.7% 
down from 7.2%), and 155KB for twolf (7.1% down from 7.3%). 
Gzip’s sharp corner is due to its working set fitting in the SACT, 
which is the component that expands the most as more resources 
become available. Also notable about gzip is that gshare+EXACT 
overtakes L-TAGE at the 525KB cost point (6.3% down from 
7.2%). At a close cost point of 533KB, L-TAGE+EXACT reaches 
5.4%, nearly 2 points lower than L-TAGE. Bzip2 and gzip are 
perfect examples in which scaling the conventional branch predictor 
(gshare or L-TAGE) does not yield any accuracy improvement, 
whereas EXACT can easily yield benefits from scaling resources. 
For twolf, L-TAGE is able to capitalize on more resources for a 
fairly broad cost range. So does L-TAGE+EXACT, improving L-
TAGE’s misprediction rate by 0.2 points at 155KB to 0.5 points at 
667KB, with the gap widening further at subsequent cost points. 
5.3.2 Virtualized SACT 
In Figure 17, the curves qualified with the label “(VIRT. SACT)” 
correspond to a virtualized L2 SACT. For bzip2, the virtualized 
implementation is slightly costlier than the dedicated one, since the 
L1 SACT is actually larger than needed (curve is slightly shifted to 
the right). Gzip benefits significantly from a large, virtualized L2 
SACT: it sheds 200-300KB of dedicated storage for the same 
accuracy. For twolf, the virtualized L2 SACT only moderately 
improves its accuracy at a given cost point. 

5.4 Explicit Predictor Cache (EX-cache) 
Some designs may favor a small predictor, for example, the leap 
from an unpipelined or moderately pipelined fetch unit to a deeply 
pipelined one may be deemed too great, or the area budget for the 
fetch unit may preclude a large predictor. We present a more 
compact form of the explicit predictor to target the domain of 
smaller predictors. 
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Figure 17.  Misprediction rate versus cost. (Note the log-scale x-axis and the y-axis does not start at 0%.) 
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First, the following features are simplified or removed: (1) the ARF 
only propagates a single address and value; (2) the stack cache is 
removed (no dependency-propagation through the stack); (3) the 
explicit loop predictor is removed; (4) all branches include history 
in their indices, so the downstream ID cache is removed and the 
chooser is simplified by removing extra bits relating to it; (5) the 
MACT-A and MACT-B tables are removed (since we only 
propagate one address in the ARF, the SACT alone will actively 
update all branches); (6) the GRT will no longer need trip-counts 
since the explicit loop predictor is removed. This cuts down the total 
cost of the fixed subcomponents (previously shown in Table 2) from 
about 20KB to 4KB. In the results that follow, we use an L1 SACT 
of 12KB with a virtualized L2 SACT in memory. 

Second, we modified the explicit predictor component to control 
which predictions are provided by it. We use a tagged table to cache 
predictions, called the EX-cache. A dynamic branch’s index into the 
predictor is based on the same information as before (past retired 
branch’s ID and global history), except now only the lower part of 
this index is used to access a set in the EX-cache and the upper part 
of the index forms the tag. To reduce the pressure on the EX-cache 
coming from the huge number of dynamic branches, the EX-cache 
caches only dynamic branches that have the uncommon branch 
outcome for a certain branch PC. To do so, we add a 3-bit saturation 
counter in the chooser table for each branch PC (similar to a 
bimodal predictor). The branch’s bias (indicated by the saturation 
counter) is checked when the EX-cache is passively trained at 
retirement. If the current branch outcome is the same as the branch’s 
bias in the chooser, the dynamic branch is not inserted in the EX-
cache if it is not cached or evicted if it is cached. But if the current 
branch outcome differs from the branch’s bias, then the dynamic 
branch is inserted in the EX-cache (if it is not already cached). 
When making a prediction at fetch-time, the EX-cache is accessed in 
parallel with the chooser: if there is a hit in the EX-cache, then the 
prediction is opposite that of the branch’s bias in the chooser; if 
there is a miss in the EX-cache, then the prediction is that of the 
branch’s bias. Active updates are handled in a similar fashion: if the 
active-update outcome matches the branch’s bias, then the index 
being updated is removed from the EX-cache; if the active-update 
outcome differs from the branch’s bias, then the index being 
updated is inserted in the EX-cache. In the latter case, since the 
SACT caches {PC, index} tuples influenced by a certain address, it 
has the index that must be inserted into the EX-cache. This 
methodology requires the SACT to be trained with all branches that 
use the EX-cache regardless of their outcome. Again, this is 
efficiently accommodated by means of the virtualized L2 SACT. 
The EX-cache requires only tag arrays without any data arrays to 
cache predictions since the prediction is decided using hit/miss in 
the EX-cache and the bias bit in the chooser. 

The simplified EXACT is comprised of a 4KB EX-cache and 16KB 
of other fixed-cost overhead (including the L1 SACT). Note that 
only the 4KB EX-cache and 1KB chooser table reside on the critical 
path of instruction fetch, the other overhead is off the critical path 
which does not affect the cycle time of the processor. Figure 18 
shows both accuracy and performance improvement achieved by 
adding a 4KB EX-cache and 16KB overhead to different L-TAGE 
size configurations. For the two benchmarks bzip2 and twolf, adding 
the 4KB EX-cache and 16KB overhead improve on accuracy and 
performance compared to doubling the L-TAGE predictor size. Gzip 
benefits less from the simplified EXACT compared to results from 
the previous section. This is due to the large working set of gzip that 

needs a larger EX-cache to capture all dynamic branches (it benefits 
less from the bias optimization than other benchmarks). On average, 
adding the simplified EXACT provides a significant improvement in 
accuracy and performance that is comparable to doubling L-TAGE 
but without sacrificing the cycle time. 
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Figure 18. Impact of adding a 4KB EX-cache and 16KB 
overhead to different L-TAGE predictor sizes. 

6. RELATED WORK 
With the advent of two-level adaptive branch prediction [25], there 
has been a plethora of research on branch predictors that combine 
branch PCs, local/global branch history, and path information in 
ingenious ways to achieve ever higher accuracy. For brevity, we 
focus instead on closely related work that recognizes the need to 
sometimes correlate on program values explicitly [3][6][7][8]. 

Gonzalez and Gonzalez [7] explicitly value-predict the source 
operands of a branch to calculate its direction early in the pipeline. 
Heil et al. [8] proposed using the last committed difference between 
a branch’s source operands coupled with the number of outstanding 
instances of the branch. 

Chen et al. [3] proposed using live-in register values of a dynamic 
branch’s backward-slice to predict the branch, if these values are 
available in the register file (committed). Backward-slices terminate 
at loads. Their results showed that 80% of dynamic branches depend 
on pending loads whose values are unavailable in the pipeline for 
making predictions. This highlights the need for explicitly predicting 
load values or addresses. Our real indexing strategy predicts the ID 
of the dynamic branch being fetched which is tantamount to 
predicting the addresses of loads in its backward-slice. 

Gao et al. [6] developed the ABC (address-branch correlation) 
predictor specifically for hard-to-predict branches that depend on 
loads that miss in the L2 cache. They exploit two observations, (1) 
the value contents of the data structures tested by these branches 
tend to be stable, therefore, a branch outcome correlates well with 
simply the address of the data structure, and (2) while the actual 
value is unavailable by virtue of being retrieved from the memory 
system, the address is available since the load on which the branch 
depends has already issued to the memory system. Accordingly, they 
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use the address of the missed load to repredict the direction of the 
load’s dependent branch. The fetch unit is redirected if the 
reprediction does not match the original prediction. Repredicting 
long-latency branches is comparatively simpler than the topic 
tackled in this paper because the address is available for the branch 
being repredicted, or, for linked-data-structure type loads, the 
address of a previous iteration of the same load is available. In 
contrast, our predictor must hide the core pipeline latency for all 
branches, requiring the ID (essentially load addresses) for every 
branch to be predicted which is the impetus for our novel indexing 
strategy. Moreover, our paper is the first to propose active updates 
and show that active updates are important when targeting all 
branches: this result differs from Gao et al.’s observation that 
underlying data is stable, which is a reasonable assumption when 
narrowly targeting some mispredicted branches. 

Thomas et al. [24] and Sazeides et al. [17] used the program’s 
dataflow graph to identify branches that are correlated, with the goal 
of pin-pointing non-consecutive global history bits that are 
correlated. Paring down global history to its useful bits is good for 
reducing training time and making a small predictor perform close 
to a large one. Their work is still confined to the accuracy bounds of 
branch-history-based prediction, which we show is limited by lack 
of specialization and store updates. 

7. SUMMARY 
State-of-the-art branch predictors have impressively pushed the 
envelope of what is possible with global branch history. This paper 
identified two interrelated problems that challenge microarchitects 
to move forward with fundamental changes in branch predictor 
design. The first problem is not sufficiently specializing predictions 
for memory dependent branches and the second problem is the 
inability to aggressively adapt to stores even if predictions are 
explicitly specialized for these dynamic branches. The two 
principles of EXACT are along these lines: explicitly specialize 
predictions for these dynamic branches and actively update them as 
stores occur. 
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