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Branch Prediction and Performance

❑ 1K-entry instruction window  

❑ 128-entry issue queue 
    (similar to Nehalem) 

❑ 4-wide fetch/issue/retire 

❑ 16 KB gshare 

❑ Randomly remove 0% to  
    100% of mispredictions
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while ( . . . ) 
{ 
    . . . 
    for (i = 0; i < 16; i++)  
    { 
        if (a[i] > 10)  
        { 
            . . . 
        } 
        else 
        { 
            . . . 
        } 
    } 
    . . . 
}

   LOAD    r5 = a[i] 
X: BRANCH  r5 <= 10

Example
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Example (cont.)

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

0 0 1

X

+

PC

GHR

0

PHT
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Good Scenario #1

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

0 0 1

X

+

PC

GHR

0

PHT
❑  a[4] has unique GHR context. 
❑  GHR implicitly identifies a[4]. 
❑  Dedicated prediction for a[4].

dedicated  
prediction  
for a[4]

© Eric Rotenberg



NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !6

Good Scenario #2

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

❑  a[6], a[10] have same GHR context. 
❑  GHR does not distinguish a[6], a[10]. 
❑  Shared prediction for a[6], a[10]. 
❑  Fortunately, they have same outcome.

shared 
prediction  
for a[6], a[10]

1 0 1

X

+

PC

GHR

1

PHT
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Bad Scenario #1

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

❑  a[6], a[15] have same GHR context. 
❑  GHR does not distinguish a[6], a[15]. 
❑  Shared prediction for a[6], a[15]. 
❑  Problem: they have different outcomes.

shared 
prediction  
for a[6], a[15]

1 0 1

X

+

PC

GHR

?

PHT
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Bad Scenario #1 (cont.)

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

❑  Indirect solution 
▪ Use longer history.  
▪ GHR now distinguishes a[6], a[15].

0 1 0

X

+

PC

GHR

PHT

1 0

X

+

PC

GHR

1

1

11 0

dedicated prediction for a[6]

dedicated prediction for a[15]
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Bad Scenario #1 (cont.)

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

❑  Indirect solution 
▪ Use longer history. 
▪ GHR now distinguishes a[6], a[15]. 
▪ Ambiguity not eradicated: a[10], a[15].

PHT

1 0

X

+

PC

GHR 11

? shared 
prediction  
for a[10], a[15]

❑  Direct solution 
▪ Use address of element. 
▪ Dedicated predictions for  
   different elements.
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Bad Scenario #2

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

0 0 1

X

+

PC

GHR

0

PHT
❑  STORE a[4] = 6

stale 
prediction  
for a[4]

6

1

❑  Conventional passive updates 
▪ Predictor’s entry is stale after store 
▪ Retrained after suffering misprediction

❑  Solution: Active updates

© Eric Rotenberg
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Big Picture

branch  
predictor

memory

Proposed
branch  
predictor

memory

Conventional

❑  Branch predictor should mirror a program’s objects

© Eric Rotenberg
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Big Picture
❑  Branch predictor should mirror a program’s objects 
❑  Branch predictor should mirror changes as they happen

branch  
predictor

memory

Conventional

Store

branch  
predictor

memory

Proposed

Store

© Eric Rotenberg
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Characterize Mispredictions
❑  Bad Scenario #1 
▪ Measure how often global branch history does 

not distinguish different dynamic branches that 
have different outcomes 

❑  Bad Scenario #2 
▪ Measure how often stores cause stale 

predictions 
❑  Evaluate for two history-based predictors 
▪ Very large gselect 
▪ Very large L-TAGE

© Eric Rotenberg
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Characterize Mispredictions

Bad Scenario #1

© Eric Rotenberg
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Characterize Mispredictions

Bad Scenario #2

Note: 
Predominance of Bad Scenario #1 may obscure occurrences of Bad Scenario #2.
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NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !16

Problems and Solutions
❑  Two problems: 
▪ {PC, global branch history} does not always distinguish 

different dynamic branches that have different outcomes 
▪ Stores to memory change branch outcomes 

❑  Two solutions: 
▪ Explicitly identify dynamic branches to provide dedicated 

predictions for them (EX) 
o  branch ID = hash(PC, load addresses) 

▪ Stores “actively update” the branch predictor (ACT)

© Eric Rotenberg
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Bad Scenario #2

Bad Scenario #1

❑  Load-dependent branches use explicit predictor 
▪ Index with branch ID (EX) 
▪ Index with branch ID and perform active updates (EXACT) 

❑  Other branches use the default predictor 
 (e.g., L-TAGE)

© Eric Rotenberg



NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !18

3 Implementation Challenges

1. Indexing the explicit predictor 
▪ Branch ID unknown at fetch time 
▪ Loads are unlikely to have computed their addresses by 

the time the branch is fetched 
2. Large explicit predictor 
▪ Many different IDs contribute to mispredictions 
▪ Predictor size normally limited by cycle time 

3. Large active update unit 
▪ Too large to implement with dedicated storage

© Eric Rotenberg
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Implementation Challenge #1: 
Indexing the Explicit Predictor

❑  Insight: sequences of IDs repeat due to 
 traversing data structures 

❑  Use ID of a prior retired branch at a fixed 
 distance N

© Eric Rotenberg
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IDEAL:
Assumes ID of Nth branch away is always available.

REAL:
Use explicit predictor only if Nth branch away is retired.
Otherwise use default predictor.

(N)

(N)

use ID 
of branch 
itself
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❑ Need large explicit predictor with fast cycle time 
❑ Indexing with prior retired branch IDs makes it 

easily pipelinable  
▪ In general, pipelining is straightforward if the index 

does not depend on immediately preceding 
predictions   

Implementation Challenge #2: 
Large Explicit Predictor 

© Eric Rotenberg
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++

++

+
+

GBQ

ID1 +
BHR

ID2 +
BHR

ID3 +
BHR

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 CYCLE 6 CYCLE 7

Implementation Challenge #2: 
Large Explicit Predictor 
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❑ Most benchmarks are tolerant of 400+ cycles of active update latency 
❑ Large distance between stores and re-encounters of the branches 

they update

Implementation Challenge #3: 
Large Storage for Active Updates 
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❑ Exploit “Predictor Virtualization” [Burcea et al.] 
❑ Eliminate significant amount of dedicated storage  
❑ Use small L1 table backed by full table in physical 

memory 
▪ The full table in physical memory is transparently 

cached in the general-purpose memory hierarchy  
(e.g., L2$)

Implementation Challenge #3: 
Large Storage for Active Updates

© Eric Rotenberg
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Putting it all together

Processor Pipeline
Fetch Retire

Explicit 
Predictor

ID Gen

Default 
Predictor

past ID for predicting current branch

passive updates

stores

active updates

Active 
Update 

Unit

1

2

3
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Active Update Unit

❑  First proposal to use store instructions 
 to update the branch predictor 

❑  Store instructions might: 
▪ Change a branch outcome in the explicit predictor 
▪ Change a trip-count in the explicit loop predictor 

❑  Two mechanisms required: 
▪ Convert store address into a predictor index 
▪ Convert store value into a branch-outcome or trip-count

© Eric Rotenberg
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Active Update Example
0x0400 STORE 0x20 ➔ X 

. 

. 

. 

0x0800 LOAD R5 ! X 

0x0808 BLE R5, 0x30, target

Explicit  
Predictor

Single-Address Conversion Table 
(SACT)

X

0xABCD

0xABCD0x0808

Ranges Reuse Table (RRT)

T min T max N min N max
0x0808 0x10

compare

T

PC index

0x30 0x31 0x50

0x20

N
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Future Work

• Rich ISA support 
– Empower compiler or programmer to directly index 

into the explicit predictor, directly manage it, and 
directly manage the instruction fetch unit 

– Close gap between real and ideal indexing 
– More efficient hardware
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