
NC STATE UNIVERSITY

Center for Efficient, Scalable, and Reliable Computing
Department of Electrical & Computer Engineering

North Carolina State University

EXACT: 
Explicit Dynamic-Branch Prediction  

with Active Updates

Muawya Al-Otoom, Elliott Forbes, Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !2

Branch Prediction and Performance

❑ 1K-entry instruction window

❑ 128-entry issue queue 
 (similar to Nehalem)

❑ 4-wide fetch/issue/retire

❑ 16 KB gshare

❑ Randomly remove 0% to  
 100% of mispredictions

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

% o f rem aining b ran ch m ispred icts rem o ved

IP
C

bzip2
gzip
two lf

89%

91%

95%

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !3

while (. . .)
{
 . . .
 for (i = 0; i < 16; i++)
 {
 if (a[i] > 10)
 {
 . . .
 }
 else
 {
 . . .
 }
 }
 . . .
}

 LOAD r5 = a[i]
X: BRANCH r5 <= 10

Example

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !4

Example (cont.)

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

0 0 1

X

+

PC

GHR

0

PHT

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !5

Good Scenario #1

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

0 0 1

X

+

PC

GHR

0

PHT
❑ a[4] has unique GHR context.
❑ GHR implicitly identifies a[4].
❑ Dedicated prediction for a[4].

dedicated  
prediction  
for a[4]

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !6

Good Scenario #2

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

❑ a[6], a[10] have same GHR context.
❑ GHR does not distinguish a[6], a[10].
❑ Shared prediction for a[6], a[10].
❑ Fortunately, they have same outcome.

shared 
prediction  
for a[6], a[10]

1 0 1

X

+

PC

GHR

1

PHT

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !7

Bad Scenario #1

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

❑ a[6], a[15] have same GHR context.
❑ GHR does not distinguish a[6], a[15].
❑ Shared prediction for a[6], a[15].
❑ Problem: they have different outcomes.

shared 
prediction  
for a[6], a[15]

1 0 1

X

+

PC

GHR

?

PHT

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !8

Bad Scenario #1 (cont.)

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

❑ Indirect solution
▪ Use longer history.
▪ GHR now distinguishes a[6], a[15].

0 1 0

X

+

PC

GHR

PHT

1 0

X

+

PC

GHR

1

1

11 0

dedicated prediction for a[6]

dedicated prediction for a[15]

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !9

Bad Scenario #1 (cont.)

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

❑ Indirect solution
▪ Use longer history.
▪ GHR now distinguishes a[6], a[15].
▪ Ambiguity not eradicated: a[10], a[15].

PHT

1 0

X

+

PC

GHR 11

? shared 
prediction  
for a[10], a[15]

❑ Direct solution
▪ Use address of element.
▪ Dedicated predictions for  
 different elements.

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !10

Bad Scenario #2

LOAD

BRANCH

4 11 15 2 7 1 3 52 9 3 8 5 55 833

a[14]a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13]

1 0 0 1 1 1 1 0 1 1 1 1 0 10

18

a[15]

0

0 0 1

X

+

PC

GHR

0

PHT
❑ STORE a[4] = 6

stale 
prediction  
for a[4]

6

1

❑ Conventional passive updates
▪ Predictor’s entry is stale after store
▪ Retrained after suffering misprediction

❑ Solution: Active updates

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !11

Big Picture

branch  
predictor

memory

Proposed
branch  
predictor

memory

Conventional

❑ Branch predictor should mirror a program’s objects

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !12

Big Picture
❑ Branch predictor should mirror a program’s objects
❑ Branch predictor should mirror changes as they happen

branch  
predictor

memory

Conventional

Store

branch  
predictor

memory

Proposed

Store

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !13

Characterize Mispredictions
❑ Bad Scenario #1
▪ Measure how often global branch history does

not distinguish different dynamic branches that
have different outcomes

❑ Bad Scenario #2
▪ Measure how often stores cause stale

predictions
❑ Evaluate for two history-based predictors
▪ Very large gselect
▪ Very large L-TAGE

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !14

Characterize Mispredictions

Bad Scenario #1

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !15

Characterize Mispredictions

Bad Scenario #2

Note:
Predominance of Bad Scenario #1 may obscure occurrences of Bad Scenario #2.

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !16

Problems and Solutions
❑ Two problems:
▪ {PC, global branch history} does not always distinguish

different dynamic branches that have different outcomes
▪ Stores to memory change branch outcomes

❑ Two solutions:
▪ Explicitly identify dynamic branches to provide dedicated

predictions for them (EX)
o branch ID = hash(PC, load addresses)

▪ Stores “actively update” the branch predictor (ACT)

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !17

Bad Scenario #2

Bad Scenario #1

❑ Load-dependent branches use explicit predictor
▪ Index with branch ID (EX)
▪ Index with branch ID and perform active updates (EXACT)

❑ Other branches use the default predictor 
 (e.g., L-TAGE)

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !18

3 Implementation Challenges

1. Indexing the explicit predictor
▪ Branch ID unknown at fetch time
▪ Loads are unlikely to have computed their addresses by

the time the branch is fetched
2. Large explicit predictor
▪ Many different IDs contribute to mispredictions
▪ Predictor size normally limited by cycle time

3. Large active update unit
▪ Too large to implement with dedicated storage

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !19

Implementation Challenge #1: 
Indexing the Explicit Predictor

❑ Insight: sequences of IDs repeat due to 
 traversing data structures

❑ Use ID of a prior retired branch at a fixed 
 distance N

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !20

0%

2%

4%

6%

8%

10%

12%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
distance

m
is

pr
ed

ic
tio

n
ra

te
 %

bzip2 crafty gzip twolf

0%

2%

4%

6%

8%

10%

12%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
distance

m
is

pr
ed

ic
tio

n
ra

te
 %

bzip2 crafty gzip twolf

IDEAL:
Assumes ID of Nth branch away is always available.

REAL:
Use explicit predictor only if Nth branch away is retired.
Otherwise use default predictor.

(N)

(N)

use ID
of branch
itself

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !21

❑ Need large explicit predictor with fast cycle time
❑ Indexing with prior retired branch IDs makes it

easily pipelinable
▪ In general, pipelining is straightforward if the index

does not depend on immediately preceding
predictions

Implementation Challenge #2: 
Large Explicit Predictor

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !22

++

++

+
+

GBQ

ID1 +
BHR

ID2 +
BHR

ID3 +
BHR

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 CYCLE 6 CYCLE 7

Implementation Challenge #2: 
Large Explicit Predictor

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !23

❑ Most benchmarks are tolerant of 400+ cycles of active update latency
❑ Large distance between stores and re-encounters of the branches

they update

Implementation Challenge #3: 
Large Storage for Active Updates

0%

2%

4%

6%

8%

10%

12%

0 100 200 300 400 500 600 700 800 900 1000
active update latency (cycles)

m
is

pr
ed

ic
tio

n
ra

te
 %

bzip2 crafty gzip twolf

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !24

❑ Exploit “Predictor Virtualization” [Burcea et al.]
❑ Eliminate significant amount of dedicated storage
❑ Use small L1 table backed by full table in physical

memory
▪ The full table in physical memory is transparently

cached in the general-purpose memory hierarchy  
(e.g., L2$)

Implementation Challenge #3: 
Large Storage for Active Updates

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !25

Putting it all together

Processor Pipeline
Fetch Retire

Explicit
Predictor

ID Gen

Default
Predictor

past ID for predicting current branch

passive updates

stores

active updates

Active
Update

Unit

1

2

3

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !26

gzip

4%

5%

6%

7%

8%

9%

1 10 100 1000 10000
cost (K-Bytes)

m
is

pr
ed

ic
tio

n
ra

te
 %

gshare
gshare+EXACT
gshare+EXACT (VIRT. SACT)
L-TAGE
L-TAGE+EXACT
L-TAGE+EXACT (VIRT. SACT)

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !27

Active Update Unit

❑ First proposal to use store instructions 
 to update the branch predictor

❑ Store instructions might:
▪ Change a branch outcome in the explicit predictor
▪ Change a trip-count in the explicit loop predictor

❑ Two mechanisms required:
▪ Convert store address into a predictor index
▪ Convert store value into a branch-outcome or trip-count

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !28

Active Update Example
0x0400 STORE 0x20 ➔ X

.

.

.

0x0800 LOAD R5 ! X

0x0808 BLE R5, 0x30, target

Explicit
Predictor

Single-Address Conversion Table
(SACT)

X

0xABCD

0xABCD0x0808

Ranges Reuse Table (RRT)

T min T max N min N max
0x0808 0x10

compare

T

PC index

0x30 0x31 0x50

0x20

N

© Eric Rotenberg

NC STATE UNIVERSITY

Int’l Conference on Computing Frontiers, May 16-19, 2010 !29

Future Work

• Rich ISA support
– Empower compiler or programmer to directly index

into the explicit predictor, directly manage it, and
directly manage the instruction fetch unit

– Close gap between real and ideal indexing
– More efficient hardware

© Eric Rotenberg

