
Virtual Multiprocessor: An Analyzable, High-Performance
Microarchitecture for Real-Time Computing∗

Ali El-Haj-Mahmoud, Ahmed S. AL-Zawawi, Aravindh Anantaraman, and Eric Rotenberg
Department of Electrical and Computer Engineering – Center for Embedded Systems Research

North Carolina State University, Raleigh, NC 27695

{aaelhaj,aalzawa,avananta,ericro}@ncsu.edu

ABSTRACT
The design of a real-time architecture is governed by a trade-off
between analyzability necessary for real-time formalism and per-
formance demanded by high-end embedded systems. We recon-
cile this trade-off with a novel Real-time Virtual Multiprocessor
(RVMP). RVMP virtualizes a single in-order superscalar proces-
sor into multiple interference-free different-sized virtual proces-
sors. This provides a flexible spatial dimension. In the time di-
mension, the number and size of virtual processors can be rapidly
reconfigured. A simple real-time scheduling approach concentrates
scheduling within a small time interval, producing a simple repeat-
ing space/time schedule that orchestrates virtualization. RVMP suc-
cessfully combines the analyzability (hence real-time formalism) of
multiple processors with the flexibility (hence high performance) of
simultaneous multithreading (SMT).

Worst-case schedulability experiments show that more task-sets
are provably schedulable on RVMP than on conventional rigid mul-
tiprocessors with equal aggregate resources, and the advantage only
intensifies with more demanding task-sets. Run-time experiments
show RVMP’s statically-controlled coarser-grain space/time con-
figurability is as effective as unsafe SMT. Moreover, RVMP pro-
vides a real-time formalism that SMT does not currently provide.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems; C.1.3 [Processor Architectures]: Other
Architecture Styles—pipeline processors

General Terms
Design, Performance

Keywords
Simultaneous multithreading, superscalar processor, resource parti-
tioning, hard real-time, worst-case execution time, scheduling

∗This research was supported in part by NSF CAREER grant CCR-
0092832, NSF grants CCR-0207785, CCR-0208581 and CCR-
0310860, and generous funding and equipment donations from Intel
and Ubicom.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05, September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

1. INTRODUCTION
To meet higher performance targets, high-end general-purpose

embedded processors have inherited microarchitecture features from
their desktop counterparts, including deep pipelining, dynamic bra-
nch prediction, multiple instruction issue, multithreading, and even
out-of-order execution. For example, ARM11-derived processors
have an 8-stage pipeline with dynamic branch prediction and caches
[8], Ubicom’s IP3023 supports 8 hardware threads [40], and IBM’s
embedded PowerPC 750 [20] is a dynamically-scheduled 2-way su-
perscalar processor.

Unfortunately, dynamic performance-enhancing techniques (most
notably dynamic branch prediction, caches, out-of-order execution,
and dynamic multithreading) make it difficult to design a large class
of embedded systems, hard-real-time systems. A real-time system
typically runs multiple periodic tasks (collectively called a task-set),
where each task repeats at fixed time intervals equal to the period of
the task (Figure 1 shows an example task-set). For tractable analy-
sis, a task’s deadline is simply its period [31], that is, an instance of
a task (e.g., A1 in Figure 1) must always complete before the next
instance of the task (e.g., A2 in Figure 1) is released. Guaranteeing
this criterion for all tasks in the task-set guarantees the task-set is
schedulable as a whole (the system will never be overrun). Sched-
ulability of a task-set must be proven or disproven a priori, using
only the worst-case execution times (WCETs) and periods of tasks.
Despite some advances in worst-case timing analysis, in practice,
deriving tight and safe (provably never exceeded) WCETs of tasks
on processors with dynamic branch prediction, caches, and out-of-
order execution, etc., is intractable. As such, dynamic microarchi-
tecture features significantly complicate and even undermine the
design process of these systems [17, 1].

WCETA

WCETB

A1

B1

Task A

Task B

release timeperiodA

B2

periodB

...

...

A2 A3

Figure 1: Periodic task model.

Higher performance can be achieved without sacrificing analyz-
ability, either by increasing the frequency of a simple processor via
deeper pipelining or by using multiple simple processors. Multi-
ple simple processors is an attractive solution due to contempo-
rary integration capability and multiprocessor-system-on-chip (Mp-
SOC) trends, combined with the natural availability of multiple ta-
sks in typical real-time embedded systems. However, the rigid and
uniform partitioning of resources among multiple processors leads
to load-balance problems, which may cause demanding task-sets
to be artificially unschedulable. That is, sufficient resources may
be available in aggregate, but individual tasks cannot be spread

1

across multiple processors. Alternatively, the system could be over-
designed with more processors to compensate.

A more flexible substrate for resource sharing is preferred, to bet-
ter utilize aggregate resources and improve the cost-performance
metric. Simultaneous Multithreading (SMT) [39] meets a similar
need in server and desktop systems, enabling fine-grain resource
sharing among multiple threads for higher overall system through-
put. However, as with other dynamic techniques described ear-
lier, SMT undermines the analytical foundation of hard-real-time
scheduling. Because there is interference among simultaneous ta-
sks, the WCET of a task must now be derived in the context of other
tasks in the task-set. This is contrary to conventional worst-case
timing analysis, which assumes a task runs alone on the processor,
and as such derives WCETs of tasks separately. Moreover, deriving
WCETs of multiple tasks running together on an SMT processor is
intractable. Since tasks have different periods, specific task combi-
nations vary over time, as does the amount by which co-scheduled
tasks overlap. Even if we know which tasks are running and which
of their regions overlap, instructions from different tasks dynami-
cally compete for shared processor resources. To sum up, SMT is
incompatible with proving hard-real-time guarantees.

In this paper, we reconcile the trade-off between performance
and analyzability in real-time systems, by introducing a Real-time
Virtual Multiprocessor (RVMP) system. RVMP is the combination
of an analyzable, high-performance microarchitecture and a simple
real-time scheduling approach.

1.1 RVMP architecture
Our novel architecture combines the analyzability of multiple

dedicated processors with the flexible resource sharing (hence higher
performance and favorable cost-performance) of SMT. We propose
a highly reconfigurable multithreaded superscalar processor that pro-
vides two levels of flexibility, in space and time. In the space di-
mension, the processor’s resources can be arbitrarily partitioned to
create multiple dedicated virtual processors, with possibly different
performance levels according to the resource partitioning. Multi-
ple tasks execute at the same time, one on each partition, without
interfering with each other. Interference-free partitions achieve the
necessary isolation for analyzability, like a conventional multipro-
cessor. Yet, because different-sized partitions can be carved out of
aggregate resources of the single superscalar processor underneath,
we overcome schedulability limitations of multiple equal-sized pro-
cessors. Superscalar “ways” (for example, there are 4 ways in a 4-
way superscalar processor) present a natural resource partitioning
strategy. For example, Figure 2(a) shows two interference-free par-
titions, one composed of 1 way and the other of 3 ways. In the time
dimension, the resource partitions can be rapidly reconfigured, even
every cycle, fluidly changing the number and size of partitions if so
desired. For example, Figure 2(b) shows the same two interference-
free partitions being reconfigured into three interference-free parti-
tions, two composed of 1 way each and one composed of 2 ways.
When and how the partitions are adjusted is determined by a static
schedule, generated by our novel real-time scheduling framework.

(a)

(b)

Figure 2: Processor space/time partitioning example. (a) Space
partitioning. (b) Rapid reconfiguration.

A crucial contribution of RVMP’s interference-free approach is
that it preserves single-task WCET analysis. That is, the WCET
of a task can still be derived independent of which other tasks are
co-scheduled with it, thanks to interference-free partitions.

Regarding the underlying superscalar processor from which par-
titions are carved, its complexity is only limited by what WCET
analysis tools can handle. Currently, dynamic techniques are be-
yond the capabilities of most WCET analysis methods. Accord-
ingly, in this paper, the underlying processor issues instructions
in order and uses static branch prediction and software-managed
scratchpad memories (instead of caches). In-order issue does not
significantly impact the performance of RVMP. Decoupled virtual
processors allow for arbitrary slippage among independent threads,
creating an implicit out-of-order execution among different threads.
As such, the performance gain from thread-level parallelism offsets
the performance loss due to in-order issue within threads, corrobo-
rated by others in the context of in-order SMT processors [19]. Pro-
grammatic memory transfers between main memory and on-chip
scratchpad memory are often used in hard-real-time applications
for determinism, not to mention possibly better performance due to
programmer/compiler managed layout [41]. It has been shown that
static branch prediction actually interacts favorably with WCET
analysis, whereas dynamic branch prediction often works against
it. Statically predicting the longest path yields a safe WCET and
also the tightest possible WCET, by virtue of adding the mispredic-
tion penalty to what is the shorter path anyway [3].

We use the high-performance Alpha 21164 4-way in-order super-
scalar processor [12] as a starting point, augmented with replicated
register files and program counters to support multiple simultane-
ous threads like the Ubicom IP3023 embedded processor [40]. We
propose novel pipeline extensions for aggregating individual ways
in both the processor’s front-end (fetch, decode, and issue ways)
and back-end (multiple heterogeneous execution pipelines), to form
one or more interference-free partitions. Forming interference-free
partitions is not always as literal as what is physically implied by
the high-level examples shown in Figure 2. The novelty of our
pipeline extensions lies in achieving the effect of physically distinct
different-sized partitions, even when the separation is not physically
apparent in certain pipeline stages. Novel mechanisms include:
• A new fetch buffer design facilitates assembling a pre-determined

number of instructions for each virtual processor every cycle.
This design minimizes impact on the critical instruction fetch
unit itself, namely we avoid multiple configurable-width I-scratch-
pad ports.

• The Alpha 21164 in-order issue stage includes the “slotter” and
“scoreboard” logic, responsible for checking data and structural
hazards and steering ready instructions to respective execution
pipelines. First, we show that the steering datapath is unchanged
since all issue slots are connected to all execution pipelines in
any case. Second, we identify natural “intervention” points in
the control logic for easily decoupling issuing among different
virtual processors.

• While our Alpha derivative pipeline fully replicates some func-
tion units – e.g., there is a simple integer unit in each of the four
execution pipelines – certain function units are only available in
some of the execution pipelines (e.g., floating-point units, agen
units/D-scratchpad ports). These may need to be shared among
multiple virtual processors, seemingly violating the interference-
free requirement. This is addressed by conservatively time-multi-
plexing shared function units, again dictated by the static sched-
ule mentioned earlier. This increases the perceived latency every
time the shared resource is used, but determinism and overall
performance benefits outweigh this localized slowdown.

2

• Reconfiguring the number and size of partitions often coincides
with changing which hardware threads are currently using parti-
tions, again determined by the static schedule. This is not a con-
text switch, just a change in thread selection. However, unlike
SMT thread selection, the interference-free requirement stipu-
lates that a deselected thread must appear to instantly relinquish
its entire partition before reconfiguring the processor. The pro-
cessor back-end is not a problem since the execution pipelines
are non-blocking – already-issued instructions are allowed to fin-
ish. Two small shadow buffers (64 bytes each) connected to the
blocking decode and issue stages facilitate physically moving the
deselected thread’s unissued instructions. Moreover, the shadow
buffers facilitate moving the preempted instructions back again
when the previous configuration is restored. (The new fetch
buffer design is inherently non-blocking and does not require a
separate shadow buffer.)

1.2 RVMP scheduling
We develop a new real-time scheduling framework that specif-

ically capitalizes on the architecture’s space/time features, (1) ar-
bitrary interference-free partitions and (2) rapid reconfiguration, to
yield a scheduling approach that is simple yet highly effective. In
turn, the architecture is orchestrated by a simple static schedule pro-
duced by the scheduling framework.

A1 A2 A3Task A

Task B

Task C

Task D

release timeperiodA
WCETA

(a) Undilated tasks.

Dilated A

Dilated B

Dilated C

Dialted D

A1 A2

ROUND

(b) Dilated tasks.

Figure 3: Task-set.

A task-set consists of multiple tasks with different worst-case
execution times (WCETs) and periods. For example, Figure 3(a)
shows a task-set with four tasks. New instances of a task are re-
leased based on the task’s period, as explicitly highlighted for task
A (instances A1, A2, and A3) in Figure 3(a). Generating a static
schedule (if a feasible one exists) involves considering arbitrary
space-sharing and time-sharing of the new architecture among ta-
sks. However, scheduling is impractical for the task-set as shown.
Because tasks have different periods, the schedule repeats only after
an entire “hyper-period”, the least-common-multiple of all tasks’
periods (too long to show in Figure 3(a)). The hyper-period may
be millions of cycles or more, depending on the task-set. Within
such a long time span, there is an overwhelming number of pos-
sible space/time configuration sequences that must be searched to
find a feasible schedule. Moreover, the dedicated-hardware cost is
high, in terms of storing a lengthy static space/time schedule.

Our solution to this problem is to “spread” out each instance of
a task throughout its period, for all tasks, as shown in Figure 3(b).
We define a small interval of time, say 100 cycles, called a round.

Each task runs for only a fraction of the round, then it is temporarily
suspended for the remainder of the round, and then it is resumed in
the next round. This process repeats indefinitely, since the comple-
tion of a task’s dilated instance (e.g., A1 in Figure 3(b)) meets with
the release of its next instance (e.g., A2 in Figure 3(b)), intention-
ally. The nice effect is to create a “sub-period” common to all tasks.
That is, the schedule repeats every round. Therefore, we only need
to concentrate on scheduling a single round instead of the entire
hyper-period.

4 ways

3 ways

2 ways

1 way

Ta
sk

 A

4 ways

3 ways

2 ways

1 way

Ta
sk

 B

4 ways

3 ways

2 ways

1 way

Ta
sk

 C

4 ways

3 ways

2 ways

1 way
Ta

sk
 D

Successful packing

Failed packing examples

Pure
space-
sharing

Pure
time-
sharing

Multi-
config.

two configurations in round

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 4: Packing of dilated tasks.

Our round-based scheduling framework considers fractional WC-
ETs of each task on 4, 3, 2, or 1 superscalar ways, as shown in
Figure 4. We use a standard bin-packing algorithm [7] to try to fit
fractional tasks into one or more architecture configurations within
a round, ranging from pure time-sharing (every task uses all 4 ways,
sequentially) to pure space-sharing (all tasks run at the same time,
one per way). Cases in between pure time-sharing and pure space-
sharing involve multiple architecture reconfigurations in the round.
Three example failed bin-packing attempts are shown at the bottom
of Figure 4, pure space-sharing, pure time-sharing, and a multi-
configuration schedule. The successful bin-packing attempt pro-
duces a two-configuration round: (1) task A on 1 way and task B on
3 ways, for 60 cycles, followed by (2) task A on 1 way, task C on 1
way, and task D on 2 ways, for 40 cycles. Thus, the processor is re-
configured twice per round. A task-set is considered unschedulable
on the architecture if bin-packing fails to find a feasible schedule

3

(in which case the system designer needs to revise task periods, op-
timize tasks’ WCETs, and/or consider higher frequency or different
processors, etc.).

To sum up, our scheduling approach is simple because we only
need to statically schedule a small time interval, the round. The
static schedule repeats indefinitely as shown in Figure 4. The ef-
ficient static schedule is stored in a compact hardware table that
controls the processor partitioning.

1.3 Contributions and paper outline
This paper makes the following major contributions.

1. RVMP architecture. We propose hardware mechanisms for vir-
tualizing a single superscalar processor into multiple different-
sized virtual processors. The virtual processors are truly interfer-
ence-free despite their creation from a common processor un-
derneath. The architecture presents the analyzability of multiple
dedicated processors with the flexibility of SMT. Interference-
free virtual processors provide the isolation needed for tractable
analysis (both in terms of preserving single-task WCET analy-
sis and facilitating real-time scheduling), thus inheriting the an-
alyzability of multiple dedicated processors. On the other hand,
different-sized virtual processors and rapid reconfiguration emu-
late flexible resource sharing of SMT.

2. Real-time scheduling framework for the RVMP architecture. We
propose a real-time scheduling framework that interacts closely
with the architecture, yielding a scheduling approach that is both
simple and effective. Dilating tasks throughout their periods en-
ables scheduling to be concentrated within a small interval of
time, the round. In stark contrast to the alternative of scheduling
an entire hyper-period, round-based scheduling is tractable, the
round’s time span is task-set-independent, and storing the com-
pact static schedule for a round is inexpensive.

3. Key performance comparisons with rigid MPs and unsafe SMTs.
We demonstrate that schedulability of task-sets is not substan-
tially affected by excluding out-of-order execution within tasks
for analyzability. Implicit out-of-order execution among tasks on
different virtual processors – a source of decoupling that does not
undermine schedulability analysis – compensates for in-order
execution within tasks. This is observed experimentally: RVMP
provably schedules task-sets (i.e., for all possible inputs) that
pass dynamic testing with specific inputs on an unsafe but other-
wise equivalent conventional SMT processor. Moreover, RVMP
successfully schedules task-sets that are not schedulable on a
rigidly-partitioned multiprocessor with equal aggregate resources.

4. Hierarchical classical/RVMP scheduling. RVMP naturally sup-
ports task-sets which have more tasks than the architecture has
virtual processors, by assigning multiple tasks to each virtual
processor and applying classical uniprocessor scheduling poli-
cies (e.g., earliest-deadline-first or fixed-priority [30]) to sched-
ule tasks that share a virtual processor. The key generalization
for multiple tasks per virtual processor: dilation is based on the
combined utilization of tasks sharing a virtual processor [13].
As with conventional multiprocessors, determining which tasks
to assign to the same virtual processor adds another dimension
to scheduling. We first show that conventional multiprocessor
assignment approaches extend to RVMP. We then highlight an
RVMP-specific dimension, namely that it is beneficial to specif-
ically consider assigning tasks with similar way-preferences to
the same virtual processor, since the virtual processor will ulti-
mately receive a single choice of issue width.

The rest of this paper is organized as follows. The RVMP archi-
tecture and RVMP real-time scheduling framework are described in
Sections 2 and 3, respectively. Section 4 outlines our experimental

methodology. Results are presented in Section 5. Related work is
discussed in Section 6. We summarize the paper in Section 7.

2. REAL-TIME VIRTUAL MULTI-
PROCESSOR (RVMP) ARCHITECTURE

The RVMP architecture is built on top of an in-order superscalar
processor. The Alpha 21164 [12], an in-order 4-way superscalar
processor, serves as a good starting point, partly because of its high-
performance emphasis and partly because of available documenta-
tion (including an interesting description of its hierarchical issue
logic). The RVMP processor architecture is shown in Figure 5.

Unlike the single-threaded 21164, RVMP supports 4 thread con-
texts, namely 4 program counters and 4 copies of the integer and
floating-point register files. Each hardware thread corresponds to
one virtual processor (VP). Thus, in this paper, there are 4 VPs.

Software-managed instruction scratchpad (I-scratchpad) and data
scratchpad (D-scratchpad) memories are used instead of caches for
deterministic high-performance. The I-scratchpad is interleaved,
having two single-ported banks to guarantee fetching four sequen-
tial instructions from a single thread every cycle. The D-scratchpad
has one read port and one read/write port, supporting issuing up to
two loads or one load and one store per cycle.

The processor has four integer execution pipelines, FU0 (simple
integer), FU1 (simple integer and integer multiplication/division),
FU2 (simple integer and load/store address generation), and FU3
(simple integer and load/store address generation). There is one
floating-point execution pipeline, FU4. All function units are pipe-
lined and can accept new instructions every cycle.

Key modifications are made to the fetch and issue stages to achi-
eve the effect of multiple different-sized interference-free VPs, em-
ulating the simplified depiction of Figure 2. Light-gray shading in
Figure 5 highlights the modified fetch and issue stages, discussed
in Sections 2.1 and 2.2, respectively.

Dark-gray shading in Figure 5 highlights new structures. Two
sets of shadow buffers are coupled to the decode and issue stages
to support rapid reconfiguration of the processor (Section 2.3). Vir-
tualization is orchestrated by a hard-real-time table (HRT), which
contains a static schedule of the processor resources for a single
round (Section 2.4).

2.1 Instruction fetch
Each cycle, the instruction fetch stage must supply a certain num-

ber of instructions from each configured thread, based on the widths
of their corresponding partitions. Moreover, these instructions must
be aligned with their corresponding partitions in the subsequent de-
code and issue stages. For example, for the configuration in Fig-
ure 2(a), the fetch stage must assemble four instructions every cy-
cle for the decode stage, comprised of one instruction from the 1-
way thread followed by three instructions from the 3-way thread.
Making the I-scratchpad arbitrarily partitionable requires multiple
interference-free configurable-width ports, an expensive prospect in
terms of area and complexity. Instead, we transfer the instruction
assembly functionality to a custom fetch buffer, concentrating com-
plexity within a more scalable structure.

The custom fetch buffer serves as a translation mechanism be-
tween (1) the single wide fetch port of the I-scratchpad that clearly
favors time-sharing and (2) multiple narrower partitions in the space-
shared decode/issue stages. A thread’s instructions are fetched from
the I-scratchpad in individual bursts of (at most) 4 instructions, into
a dedicated 4-instruction column of the fetch buffer. Then, the fetch
buffer drains and aligns instructions from the column at an even
pace that matches the width of the corresponding partition.

4

Fetch
Unit

Interleaved
Instruction
Scratchpad

PC

Slotter and
Scoreboard

(Issue Logic)

FU0: INT

FU1: INT/MUL/DIV

FU2: INT/AGEN

FU3: INT/AGEN

Int RF

FP RF FU4: FPU

Data
Scratchpad

HRT

4

1

Shadow
Buffer

Decode
4

RD

RD
WR

Shadow
Buffer

Fetch Buffer

Figure 5: RVMP processor architecture.

In more detail:
• In a given cycle, the I-scratchpad delivers (at most) 4 instruc-

tions from one thread corresponding to a configured VP. Each VP
has a dedicated 4-instruction column in the fetch buffer. Thus,
since there are four VPs, there are four columns. The (at most)
4 fetched instructions are written into the corresponding column.
Since, in a given cycle, instructions are fetched on behalf of only
one VP, the fetch buffer only requires a single 4-instruction-wide
write port to write a whole column.

• To maintain equilibrium between incoming/outgoing instructions
from each VP’s column, VPs are assigned fetch cycles commen-
surate with their partition widths. That is, 1-way, 2-way, 3-way,
and 4-way VPs are assigned 25%, 50%, 75%, and 100% of fetch
cycles, respectively. For example, a 2-way VP inserts (at most)
4 instructions into its column every other cycle. Assuming no
stalls in later stages of the VP, 2 instructions are removed from
its column in each of two consecutive cycles, in time for the next
4-instruction insertion. If a minimum of one cycle is needed
between insertion and removal, at most 4 additional instruction
slots per column accommodates all scenarios in which draining
is not fully caught up by the time of the next insertion. (This def-
initely is required for a 3-way VP, which inserts 4 instructions
in three out of four cycles: consecutive 4-instruction insertions
temporarily outrun consecutive 3-instruction removals.)

• The fetch buffer has four 1-instruction-wide read ports. Each
read port can access any instruction in the fetch buffer. Inde-
pendent fine-grain read ports provides arbitrary configurability,
in terms of assembling a certain number of instructions for each
configured thread and aligning them with the corresponding par-
titions in the subsequent decode and issue stages.
The fetch buffer plays another vital role. When a VP is sus-

pended during the round (due to reconfiguration), its fetched in-
structions remain in the corresponding fetch buffer column until the
VP is resumed during the next round. Per-VP storage in the fetch
stage, plus shadow buffers coupled to the decode and issue stages
(discussed in Section 2.3), gives each VP the ability to (1) instantly
suspend without blocking progress of other VPs and (2) instantly
resume from the point it was suspended, preserving the integrity of
assumed-suspension-free WCET bounds.

2.2 Instruction issue
We first briefly explain how instruction issuing works in the single-

threaded 21164, as best we can infer from a detailed paper [12].
Then, we discuss three key intervention points in the issue logic that
are exploited to achieve the effect of interference-free partitions.

2.2.1 Background on 21164 issue logic
The 21164 issues instructions strictly in program order. Instruc-

tion issue is implemented in two phases, the slot logic and score-

board logic. The two phases implement hazard resolution hierar-
chically, first resolving hazards within a fetch/decode group (slot
logic) and then resolving hazards between the fetch/decode group
and already-issued instructions (scoreboard logic).

The slotter consists of a 4-instruction staging buffer and a cross-
bar for steering instructions from the staging buffer to the execu-
tion pipelines. Four instructions received from the decode stage
are placed in the staging buffer in program order. Since the 21164
is single-threaded, all four instructions belong to the same thread.
The purpose of the first phase is to detect data dependences and con-
flicts for execution pipelines, only among instructions in the staging
buffer. Only a contiguous block of independent and non-conflicting
instructions, starting from the oldest instruction in the staging buffer
and stopping at the first dependent or resource-conflicting instruc-
tion, are declared as “ready” for advancement to the second phase.
These preliminarily ready instructions are steered to the appropriate
execution pipelines, where the second phase begins.

Instructions that advance from the staging buffer to the execution
pipelines check the register scoreboard before issuing. The score-
board detects read-after-write and write-after-write hazards between
instructions in the issue stage and instructions already in the execu-
tion pipelines. When a hazard is detected, the instruction is pre-
vented from issuing to the register read stage and the function unit.
Independent instructions that had advanced with it from the staging
buffer, which are logically after the instruction in program order,
are also stalled from issuing.

2.2.2 RVMP issue logic
In RVMP, the datapath associated with the staging buffer does

not need to be changed. As before, the crossbar facilitates steer-
ing any instruction in the staging buffer to any execution pipeline.
For decoupling issuing among different VPs, we identify three key
intervention points in the control logic to work as seamlessly as
possible with the existing control logic.

The staging buffer may contain instructions from multiple VPs.
Fortunately, each VP will have its instructions in contiguous staging
buffer entries, in program order, as assembled by the fetch buffer.
Above, we highlighted the logic that checks for dependences among
instructions in the staging buffer. This logic compares the source
operands of newer instructions in the staging buffer with the desti-
nation operands of all older instructions. Within the staging buffer,
the physical arrangement of instructions matches their program or-
der and presumably the dependence checking logic is hardwired
accordingly. The match between physical and logical order is pre-
served within partitions. Therefore, the hardwired dependence che-
cking logic is compatible with multiple partitions. We only need
to include VP IDs in the operand comparisons, thereby partition-
ing the dependence checking logic among VPs, decoupling the first
phase of instruction issuing.

5

The staging buffer control logic also checks for execution pipeline
conflicts among instructions in the staging buffer. In RVMP, con-
flicts among instructions from different VPs are prevented statically
via the HRT (Section 2.4). The HRT specifies the owner (VP) of
each execution pipeline every cycle. Thus, the second key interven-
tion point is overriding per-instruction request signals in the staging
buffer with ownership information from the HRT. By the same to-
ken, conflicts are resolved the same as before for instructions in the
same VP: one or more instructions in the same VP may request an
execution pipeline if their VP owns it this cycle, initiating arbitra-
tion as before.

Finally, intervention is also needed in the second phase, the score-
board. Since the multithreaded processor has per-thread register
files, it naturally requires per-thread scoreboards. Instructions use
their VP IDs to lookup the corresponding scoreboard. A stalled in-
struction only causes other instructions in the same VP to stall. This
is achieved by gating stall signals with VP IDs.

2.3 Shadow buffers
Reconfiguring the processor involves suspending one or more of

the currently configured VPs and resuming one or more suspended
VPs, as shown in Figure 2(b). Tasks’ WCETs are derived conven-
tionally, i.e., without knowledge of round-based suspend/resume
operations. This means round-based suspend/resume operations
must have no perceived execution time overhead (or at least a known
worst-case overhead, preferrably small, that can be added to tasks’
WCETs).

The problem is, at the time of reconfiguration, a newly suspended
VP still has instructions in the pipeline. If these instructions are
stalled, they will block newly resumed VPs, violating interference-
free requirements (single-task WCETs are no longer provably safe).
Moreover, instructions of the newly suspended VP will be confused
for instructions of one or more newly resumed VPs (as old partitions
are repartitioned).

We only need to consider pipeline stages that may block, namely
stages in the processor frontend (fetch, decode, and issue). The
execution pipelines are free-flowing, so it is safe to allow already-
issued instructions of newly suspended VPs to finish. Although
the fetch stage is blocking, VPs cannot block each other thanks to
dedicated storage per VP in the custom fetch buffer (columns).

We couple a set of shadow buffers to each of the decode and is-
sue stages, to checkpoint/restore the contents of the stages across
processor reconfigurations. The number of shadow buffers per set
is the same as the number of VPs, since there is a maximum of #VP
reconfigurations per round (pure time-sharing). When the configu-
ration of the processor is changed, the four instructions in the de-
code stage and the four instructions in the issue stage are saved to
one of the shadow buffers in each set. During the next round, at the
beginning of the same configuration, those instructions are placed
again in the corresponding stage latches. Each set of shadow buffers
requires only 64 bytes of storage (4 buffers × 4 instr. × 4 bytes).

The shadow buffers are extensions of the pipeline and as such
do not pose any unusual problems regarding intrerrupt handling. If
a VP is interrupted, instructions of the corresponding thread must
be drained from the pipeline whether or not the VP is currently
suspended. The design of any real-time system, conventional or
RVMP-based, requires bounding the worst-case interrupt handling
latency as well as bounding the worst-case number of interrupts.

2.4 Hard real-time table (HRT)
The HRT orchestrates the resource sharing among VPs. In par-

ticular, the HRT (1) allocates fetch bandwidth, by indicating which
VP owns the fetch unit and I-scratchpad each cycle, (2) partitions

superscalar ways among VPs, by controlling the assembly of in-
structions from the fetch buffer (number of instructions from each
VP and their alignment with corresponding partitions in the de-
code/issue stages), and (3) allocates execution pipelines, by spec-
ifying the owner VP of each function unit every cycle.

The HRT contains the processor’s resource schedule for a single
round, as determined by static real-time analysis (Section 3). Each
entry of the HRT represents a different processor configuration dur-
ing the round. Since there is a maximum of #VP reconfigurations
per round (pure time-sharing case), the maximum number of HRT
entries required is also #VP (four in this paper). For each con-
figuration (i.e., HRT entry), sharing patterns are encoded using a
4-cycle “mini” schedule for each shared resource. The mini sched-
ules specify the resource bandwidth allocated to each VP, as we
explain shortly. Each entry consists of:
• An 8-bit lifetime counter (LTC). The LTC indicates the number

of cycles per round for which this entry (configuration) is valid.
The sum of the LTCs of all entries equals the duration of the
round.

• A 4-entry fetch vector (FV). The FV is a 4-cycle cyclic schedule
for the fetch unit, specifying which VP to fetch instructions for in
each cycle, for the lifetime of the HRT entry. A 4-cycle schedule
is enough to specify the percentage of fetch cycles assigned to
each VP based on its number of ways.

• A 4-entry partitioning vector (PV). The PV is used, for the life-
time of the HRT entry, to determine how superscalar ways are
partitioned among VPs. The PV controls assembly of instruc-
tions from the fetch buffer corresponding to partitions in the de-
code and issue stages.

• Five configuration vectors (CVs), one for each function unit.
Like the FV, each CV is a 4-cycle cyclic schedule for the function
unit. Each entry of a CV indicates which VP owns the function
unit during the corresponding cycle.

• A 2-bit cycle count (CC). During the lifetime of an HRT en-
try, its CC is used to index (i) the FV, to determine which VP
owns the fetch unit in the current cycle, and (ii) all five CVs, to
lookup which VP owns which function units in the current cycle.
The CC is incremented every cycle, wrapping back to zero every
fourth cycle. Thus, the 4-cycle sharing patterns specified by the
FV and CVs are repeated every four cycles for the lifetime of the
entry.

• A 1-bit end-of-table (EOT) flag. The EOT flag is set for the last
valid entry of the table.
The HRT is initialized by software before starting a task-set (e.g.,

system startup). The total required storage space of the HRT is less
than 40 bytes.

Initially, a watchdog counter is loaded with the content of the
LTC of the first HRT entry (the active entry). The FV, PV, and CVs
of that entry are used to configure the processor. The watchdog
counter decrements by one each cycle. When the watchdog counter
reaches zero, the next HRT entry becomes the active entry, and so
on. When the end of the table (EOT flag) is reached, the active entry
wraps back to the first HRT entry, corresponding to the beginning
of a new round.

Example. Figure 6 shows the HRT contents for the example par-
titioning of Figure 4. The static schedule for one round is repeated
here for convenience (left-hand side of figure). Recall from that ex-
ample, there are four tasks in the task-set and each task is mapped
to one of the four available VPs. The duration of the round is 100
cycles. There are two different configurations during the round,
one active for 60 cycles and the other for 40 cycles. Thus, the HRT
contains only two valid entries (the last two entries of the HRT are
invalid).

6

VP0

VP2

VP1

VP3

W1

W2

W3

W4

0 60 100

FU0
FU1
FU2
FU3
FU4

FU0
FU1
FU2
FU3
FU4

0

040

60 0

1

INVALID
INVALID

LTC CVs CCPV EOTFV

Figure 6: Example HRT contents.

The first entry of the HRT indicates that, for 60 cycles, there are
two active VPs: VP0 and VP1. The superscalar ways are partitioned
between the two VPs as indicated by the PV: 1 way for VP0 and 3
ways for VP1. The FV determines the nature in which the two VPs
time-share the fetch unit: 1 fetch cycle for VP0 followed by 3 fetch
cycles for VP1, and so on (thus, VP0 fetches a peak of 4 instructions
every 4 cycles, or 1/cycle, and VP1 fetches a peak of 12 instructions
every 4 cycles, or 3/cycle).

The CVs indicate that the 1-way VP0 owns each function unit
for only 1 cycle out of 4 (25% share) and the 3-way VP1 owns each
function unit for 3 cycles out of 4 (75% share). Consider instruc-
tions that can execute in any of the four function units FU0-FU3,
namely simple integer instructions. While VP0 owns each of FU0-
FU3 only 25% of the time, since there are four of them, one of
them will be available each cycle for VP0. Likewise, three of them
will be available each cycle for VP1. Thus, as should be the case,
there are no conflicts for simple integer units and no corresponding
impact on tasks’ WCETs. On the other hand, consider instructions
that have a limited number of function units to choose from. For
example, integer multiply instructions can only execute on FU1.
VP0 owns FU1 for one cycle out of four. Thus, WCET analysis
safely extends the latency of multiply instructions in VP0 by three
cycles, the worst-case wait time for a ready multiply instruction in
VP0. Similarly, VP1 owns FU1 for three cycles out of four, and
WCET analysis safely extends the latency of multiply instructions
in VP1 by one cycle, the worst-case wait time for a ready multiply
instruction in VP1. To sum up, static arbitration for contended units,
via the HRT’s CVs, makes it possible to bound the worst-case wait
time of instructions that use these units.

The second HRT entry in Figure 6 indicates that three VPs are
active for the remaining 40 cycles of the round: VP0 (1 way, 25%
share), VP2 (1 way, 25% share), and VP3 (2 ways, 50% share).

3. REAL-TIME SCHEDULING ANALYSIS
Static real-time scheduling analysis for RVMP is responsible for

assigning tasks to VPs and allocating processor resources to VPs (in
both space and time) to guarantee that tasks will meet their dead-
lines. The final output is the HRT contents, corresponding to the
space/time schedule of VPs within a round.

We first consider the case in which the number of tasks in the
task-set is less than or equal to the number of VPs, thus, only a
single task is assigned to each VP (Section 3.1). We then extend
the framework to cover the general case of multiple tasks per VP
(Section 3.2).

3.1 Single task per virtual processor
The analysis attempts to find the least possible space share (num-

ber of ways) and time share for each VP within the round, such
that tasks assigned to the VPs will meet their deadlines. Strictly

speaking, the analysis does not need to find the most efficient sched-
ule, just the first one that works. Nonetheless, by finding the most
efficient schedule, excess resources may be used later to attempt
scheduling another periodic hard-real-time task, sporadic (one-time)
hard-real-time tasks, periodic soft-real-time tasks, etc.

The analysis proceeds in two steps. First, the analysis produces
a space/time schedule for VPs within the round (unless no feasi-
ble schedule is found, in which case the task-set is considered un-
schedulable on the architecture). Second, the contents of the HRT
corresponding to the schedule are synthesized.

3.1.1 Generating space/time schedule
Recall that our analysis is based on evenly spreading out the ex-

ecution of every task over multiple rounds between their releases
and deadlines (Figure 4). This conveniently enables us to concen-
trate scheduling within a single round.

Each task is guaranteed a fixed fraction of the round, called a
duty cycle (d, where d ≤ 1). Since the maximum fraction of time
that a task i uses the system overall is Ui = WCETi

periodi

(called worst-
case utilization), this is naturally the same fraction of the round that
task i must be guaranteed. That is, a task’s duty cycle is simply its
worst-case utilization: di = Ui = WCETi

periodi

. Since a task’s WCET
depends on the number of superscalar ways allocated to the VP to
which the task is assigned, the task’s duty cycle also depends on the
way allocation of its assigned VP.

Since the analysis considers a single round and abstracts the pro-
cessor’s resources as superscalar ways, the scheduling algorithm
works on a two-dimensional region with area of R × W , where R

is the duration of the round (time dimension) and W is the total
number of superscalar ways (space dimension). The space/time al-
lotments of VPs are also modeled as two-dimensional regions, each
with an area of (d × R) × w, where w is the number of ways allo-
cated to the VP, d is the duty cycle of the task assigned to the VP
assuming w ways, and R is the duration of the round.

The scheduling algorithm considers all possible way allocations
(1, 2, 3, or 4 ways) for every VP. For each combination of VPs, we
sum the VPs’ “areas” (the area of a VP is (d×R)×w as explained
above). If this sum is greater than the total area available (R×W),
the combination is discarded right away because it is impossible to
schedule.

Now we need to concentrate on combinations that yield a com-
bined area less than the total available area. For each such combi-
nation, we need to fit all the VPs (with their specified superscalar
ways and duty cycles) within the overall R × W region. This is
a 2-dimensional bin-packing problem [11]. The bin is a rectangle
of width R (duration of round) and height W (total number of su-
perscalar ways). The items we need to pack are the VPs, each of
width d × R (the duration of its duty cycle assuming w ways) and
height w (the number of ways allocated to it). Bin packing is an
NP-hard problem [11], and there exists a wide range of approx-
imate solutions. Each solution consists of a pre-heuristic, which
deals with the order in which the items are packed, and a heuris-
tic, which deals with the packing algorithm itself. The most widely
used pre-heuristics are sorting the items (largest first) according to
their height, width, area, or perimeter [11]. We use sorting based on
perimeter as our pre-heuristic. As for the heuristic, there are plenty
of algorithms described in the literature. We use the Bottom-Left-
Fill (BLF) algorithm [7] in this paper.

The BLF algorithm takes the first item in a sorted list, and finds
the bottom- and left-most corner of the bin where the item can fit,
and places the item there. This process is repeated until all the items
are packed. An example is shown in Figure 7. Assume we have four
VPs to which tasks A, B, C, and D are assigned, with way alloca-

7

tions as shown. The tasks are characterized as follows (Task(duty
cycle,ways)): A(1,1), B(0.6,3), C(0.4,1), and D(0.4,2). Since the
pre-heuristic sorts based on perimeter, the sorted list is as follows:
B, A, D, C. The BLF algorithm starts with an empty rectangular
area of R × W as in Figure 7(a). The first item in the sorted list
is task B. The algorithm locates the bottom- and left-most corner,
indicated by (×) in Figure 7(a), and places B there. The next item
is task A, and two corners are located in Figure 7(b). Task A will fit
only in the upper one, so it is placed there (Figure 7(c)). The same
procedure is repeated for tasks D (Figure 7(d)) and C (Figure 7(e)).

W

R

(a) (b) (c) (d) (e)
0

Task A Task CTask B Task D

R0 R0 R0 R0

Figure 7: BLF packing example.

Bin packing is repeated for all partitioning combinations (i.e.,
trying 1, 2, 3, and 4 ways for every VP) that meet the maximum
area requirement. Among combinations that succeed the packing
algorithm, we select the combination that minimizes the used area
(although from the standpoint of scheduling only the task-set, the
first successful combination would do). The packed schedule of this
combination is used to synthesize the contents of the HRT.

3.1.2 Synthesizing HRT contents
There are only five possible processor configurations given 4

superscalar ways: (a) four 1-way partitions, (b) two 1-way parti-
tions and one 2-way partition, (c) two 2-way partitions, (d) one 1-
way partition and one 3-way partition, and (e) one 4-way partition.
The HRT entries corresponding to each processor configuration (a)-
(e) are manually synthesized and shown in Figure 8, respectively.
Briefly, for a given processor configuration, a VP is assigned a frac-
tion of the processor’s resources equal to its fraction of superscalar
ways. For example, in Figure 8(a), each of the 1-way VPs has a
25% share of the processor’s resources: each VP owns every func-
tion unit (including the fetch unit) for one cycle out of four.

The real-time analysis of Section 3.1.1 may produce a round with
multiple processor configurations. For the example in Figure 7,
Figure 8(d) is used for the first entry in the HRT (with an LTC of
60 cycles) and Figure 8(b) is used for the second entry in the HRT
(with an LTC of 40 cycles and EOT=1).

3.2 Multiple tasks per virtual processor
If there are more tasks in the task-set than the architecture has

VPs, then VPs need to support more than just one task each.
The same situation arises in the context of conventional multi-

processors, when there are more tasks than physical processors. In
this case, multiple tasks are assigned to each processor, and classi-
cal real-time scheduling policies for uniprocessors – e.g., earliest-
deadline-first (EDF) or rate-monotonic (RM) [30] – schedule tasks
on the same processor. Then, the only question is how to assign

tasks to processors, a deeply studied area that is often cast, again,
as a bin packing problem with many applicable heuristics [28].

Since VPs are completely decoupled, RVMP can be abstracted
as a (flexible) multiprocessor and thus the same techniques apply.
1. Multiple tasks per VP are naturally accommodated by applying

(for example) EDF scheduling within VPs. A VP’s duty cycle
must now accommodate the combined utilization of all tasks as-
signed to it. That is, the duty cycle of a VP is simply the sum
of the duty cycles of tasks assigned to it. Since our procedure of
Section 3.1 bin-packs VPs, not tasks, the procedure transparently
extends to multiple tasks per VP as long as VPs’ duty cycles are
calculated using the generalization above.

2. We apply bin packing once again to ensure a good assignment
of tasks to VPs, with a subtle enhancement. Since tasks sharing
the same VP will ultimately execute on the same number of su-
perscalar ways (the number of ways ultimately allocated to a VP
does not vary) an additional consideration when grouping tasks
is whether or not they have similar (in-order) instruction-level
parallelism (ILP).

4. EXPERIMENTAL METHODOLOGY
The primary experiments involve static worst-case schedulabi-

lity analysis, which determines the ability to schedule task-sets on
various architectures. We compare worst-case schedulability of
task-sets on the proposed RVMP architecture and several conven-
tional multiprocessors with equal aggregate resources. Since there
is no known static worst-case schedulability analysis framework for
SMT (unsafe), it is excluded from the primary experiments.

The primary experiments are followed by secondary experiments,
proof-of-concept simulations of the various architectures. Note, dy-
namic testing does not prove the schedulability of a task-set in the
worst-case, only its schedulability for the particular task-set inputs
used. Detailed microarchitectural simulation is useful as a prototyp-
ing exercise (proof-of-concept) and it also provides a medium for
comparing run-time performance of RVMP and SMT for particular
task-set inputs.

For the secondary experiments, we use a custom detailed cycle-
level simulator that faithfully models the RVMP architecture de-
scribed in Section 2. The custom simulator was developed using
the SimpleScalar toolset [4], insofar as using the SimpleScalar ISA
(PISA) and gcc-based compiler. The simulator also models conven-
tional multiprocessor and SMT architectures. Conventional SMT
uses out-of-order execution (64-entry reorder buffer), dynamic br-
anch prediction (gshare predictor with 216 entries), and hardware-
managed caches (the same sizes as RVMP’s software-managed scr-
atchpads, borrowed from Ubicom’s IP3023 microprocessor [40]:
256KB I-scratchpad and 64KB D-scratchpad). All task-sets are
simulated for a complete hyper-period or 100 ms, whichever is less.
In these secondary experiments, we compare the run-time perfor-
mance of (1) RVMP, (2) various equivalent multiprocessor systems
with equal aggregate resources, and (3) (unsafe) SMT. Run-time
performance is compared in terms of successfully meeting all dead-
lines or not.

4.1 Static worst-case timing analysis
The real-time scheduling analysis presented in Section 3 requires

the WCET for each task, for each of 1-way, 2-way, 3-way, and 4-
way partitions. For each task τ , these are referred to as WCETτ{1},
WCETτ{2}, WCETτ{3}, and WCETτ{4}, respectively. We can-
not simply assume that WCETτ{4} = 1

4
× WCETτ{1}, because

performance does not scale linearly with the number of superscalar
ways. Moreover, the worst-case-extended instruction latencies ca-
used by time-sharing contended function units (as explained pre-

8

4-way VP

FV

FU0
FU1
FU2
FU3
FU4

1-way VP

1-way VP
1-way VP

FV

FU0
FU1
FU2
FU3
FU4

1-way VP

1-way VP
3-way VP

FV

FU0
FU1
FU2
FU3
FU4

FV

FU0
FU1
FU2
FU3
FU4

2-way VP

1-way VP
1-way VP

FV

FU0
FU1
FU2
FU3
FU4

2-way VP
2-way VP

(a) (b) (c) (d) (e)

PV PV PV PV PV

Figure 8: The five possible processor configurations for a 4-way superscalar processor.

viously in Section 2.4) are different among the four cases. WCET
analysis needs to be performed specifically for each partition width.

WCET analysis involves identifying the longest timing paths in
the program, moving upwards from inner loops and leaf functions
towards outer loops and functions at higher levels. Forward branches
are handled by selecting the longer of two timing paths, after padding
the taken path with the misprediction penalty, since our static bra-
nch prediction heuristic predicts forward branches as always not-
taken. Backward branches are handled by padding the loop contin-
uation with the misprediction penalty, since our static branch pre-
diction heuristic predicts backward branches as always taken. Af-
ter identifying longest timing paths, we use simulation to tightly
model overlapped execution of instructions along these paths. Note
that the scratchpads are partitioned among tasks to eliminate in-
terference and improve analyzability, a common practice in hard-
real-time systems [24, 42]. Methods for bounding worst-case me-
mory latency when there are memory accesses from simultaneous
tasks [13] (e.g., bus serialization, DRAM bank conflicts, etc.) are
applicable for RVMP and conventional multiprocessors alike.

4.2 Real-time tasks and task-sets
We use benchmarks from the C-lab real-time benchmark suite [5]

and MiBench embedded benchmark suite [16], shown in Table 1.
These benchmarks are compiled to the SimpleScalar PISA ISA [4]
with -O3 optimization enabled. The first column in Table 1 shows
the benchmark names. The second through fifth columns show four
WCETs for each task, for each of 1, 2, 3, and 4 ways, respectively.

Table 1: Benchmarks (WCETs in ms at 1GHz).
Task WCET{1} WCET{2} WCET{3} WCET{4}
cnt 0.118 0.0929 0.0777 0.0777

adpcm 3.06 2.29 1.86 1.64
srt 2.26 1.51 1.13 1.01
mm 2.93 2.29 1.97 1.97
fft 0.692 0.526 0.496 0.447

lms 0.205 0.140 0.123 0.0963
crc 0.0594 0.0513 0.0434 0.0434

toast 0.347 0.261 0.253 0.231
untoast 0.129 0.107 0.0932 0.0925

lame 9.79 7.64 6.95 6.27

Using the tasks above, we generate numerous task-sets with 4
tasks and others with 8 tasks. Tasks are randomly selected for each
task-set. The period of every task is randomly selected such that
WCET{4} ≤ period < 4 × WCET{1} (or 8 × WCET{1}
for task-sets with 8 tasks). The lower bound on the period ensures
that any single task will at least be schedulable on a 4-way in-order
processor. The upper bound on the period provides some slack for
the task-set as a whole to be possibly schedulable.

We define the scalar utilization (Uscalar) of a task-set as the sum
of its tasks’ worst-case utilizations according to their WCETs on a
scalar in-order pipeline (

∑
τ

WCETτ{1}
periodτ

, for all tasks τ in the task-
set). Task-sets are sorted into four different categories (or bins)
based on their Uscalar . The four bins are as follows: 0 < Uscalar ≤
1, 1 < Uscalar ≤ 2, 2 < Uscalar ≤ 3, and 3 < Uscalar ≤ 4.
Each bin has 25 randomly-generated task-sets. These bins represent
increasing difficulty in scheduling a task-set, the first bin containing
the least demanding task-sets and the fourth bin containing the most
demanding task-sets. Any task-set with Uscalar > 4 is provably
unschedulable on all architectures used in the primary experiments.

5. RESULTS

5.1 Schedulability tests
The graph in Figure 9 shows worst-case schedulability results,

for various statically analyzable architectures. Figure 9(a) is for
task-sets with 4 tasks each and Figure 9(b) is for task-sets with 8
tasks each. For each utilization bin, we plot the number of task-
sets in that bin that are schedulable (“Success”) versus not schedu-
lable (“Failure”) in the worst case, for the various architectures.
“Scalar” is the in-order scalar processor, used to calculate the scalar
utilization (Uscalar) for each of the task-set bins. “RVMP” is our
proposed real-time virtual multiprocessor. The other three bars cor-
respond to classic earliest-deadline-first (EDF) scheduling on var-
ious conventional uniprocessor and multiprocessor configurations:
“4×1” (four in-order scalar processors), “2×2” (two in-order 2-way
superscalar processors), and “1×4” (a single in-order 4-way su-
perscalar processor). All architectures have the same frequency (1
GHz). All architectures (except “Scalar”) have equal aggregate re-
sources (equal aggregate fetch, issue, and function unit bandwidth).
For the conventional multiprocessor systems (“4×1” and “2×2”),
the first-fit-decreasing-utilization algorithm [34] is used to assign
tasks to processors when there are more tasks than processors.

The numbers on the bars represent how many task-sets succeeded
and how many failed (out of a total of 25 task-sets per bin). For
example, for the second utilization bin (1 < Uscalar ≤ 2) in Fig-
ure 9(a), 16 task-sets are schedulable on “RVMP” and 9 task-sets
are not, in the worst case.

Task-sets in the first utilization bin are provably schedulable on
an in-order scalar processor because their scalar utilizations are less
than or equal to 1, therefore we expect these task-sets to be schedu-
lable on all five architectures. This is confirmed in Figure 9(a) and
Figure 9(b): all 25 task-sets are schedulable (“Success”) on all five
architectures. On the other hand, task-sets in the three higher uti-
lization bins (Uscalar > 1) are provably unschedulable on “Scalar”,
as confirmed in Figure 9.

9

25 25 25 25

16
14 15

5

16

9
7

2

7

1 1

25

9
11 10

20

25

9

16
18

23
25

18

24 24 2525

0%

25%

50%

75%

100%

S
ca

la
r

R
V

M
P

4x
1

2x
2

1x
4

S
ca

la
r

R
V

M
P

4x
1

2x
2

1x
4

S
ca

la
r

R
V

M
P

4x
1

2x
2

1x
4

S
ca

la
r

R
V

M
P

4x
1

2x
2

1x
4

0 < U_scalar <= 1 1 < U_scalar <= 2 2 < U_scalar <= 3 3 < U_scalar <= 4

Task-set bins

S
uc

ce
ss

 r
at

e
(%

)
Failure
Success

(a) 4 tasks per task-set

25 25 25 25

15
13 13

3

12

7 6

1

5

1

25

10
12 12

22
25

13

18 19

24 25

20

24 25 2525

0%

25%

50%

75%

100%

S
ca

la
r

R
V

M
P

4x
1

2x
2

1x
4

S
ca

la
r

R
V

M
P

4x
1

2x
2

1x
4

S
ca

la
r

R
V

M
P

4x
1

2x
2

1x
4

S
ca

la
r

R
V

M
P

4x
1

2x
2

1x
4

0 < U_scalar <= 1 1 < U_scalar <= 2 2 < U_scalar <= 3 3 < U_scalar <= 4

Task-set bins

S
uc

ce
ss

 r
at

e
(%

)

Failure
Success

(b) 8 tasks per task-set

Figure 9: Worst-case schedulability analysis.

As we move from lower to higher utilization bins, scheduling
task-sets naturally becomes harder. In all cases, however, “RVMP”
successfully schedules more task-sets than all the other architec-
tures, demonstrating greater flexibility compared to rigid multipro-
cessors. Moreover, flexibility becomes more important for more de-
manding task-sets. For example, from Figure 9(a), “RVMP” sched-
ules 7 task-sets in the highest utilization bin, whereas the next best
architectures (“4×1” and “2×2”) schedule only 1 task-set.

The single in-order 4-way superscalar processor, “1×4”, suc-
cessfully schedules considerably fewer task-sets than the other ar-
chitectures, across the board. This is due to the lack of out-of-order
execution of either kind: no OOO execution within tasks (neces-
sary for analyzability) and no OOO execution among tasks (“1×4”
is single-threaded).

Figure 9(b) shows that “RVMP” is scalable in terms of support-
ing more tasks than VPs. For task-sets with 8 tasks, two tasks are
scheduled on each VP using EDF scheduling within each VP.

Figure 10 shows a histogram of the various processor configura-
tions used by “RVMP” to schedule the task-sets of Figure 9(a). (For
example, “1-3/2-2” denotes two configurations in the round: (i) a 1-
way VP and 3-way VP, and (ii) two 2-way VPs.) For task-sets with
Uscalar ≤ 1 (not shown here), “RVMP” was configured as four
1-way partitions with no reconfigurations during the round. This is
expected due to the low demand of task-sets in that bin (all task-
sets were successfully schedulable on “Scalar”). Notice however,
that “RVMP” shifts more and more to flexible configurations as the
task-sets become more demanding (higher Uscalar). This observa-
tion is consistent with the results of Figure 9(a). In the highest bin,
“RVMP” is still able to schedule 7 demanding task-sets whereas
“4×1” and “2×2” only schedule 1 task-set each. Flexible configu-
rations are clearly valuable in this regime.

5.2 Run-time experiments
In Figure 11, we show the number of task-sets that succeed or fail

at run-time on the various architectures, using our cycle-level sim-
ulator. A task-set is considered successful if all deadlines are met
for the simulated time-frame (the lesser of the hyper-period or 100
ms). To reiterate, whereas formal schedulability results from the
previous subsection hold in the worst case, regardless of the task-
set inputs, simulation results in this section only hold for specific
task-set inputs.

Two unsafe SMT architectures are now introduced, in addition
to the safe architectures used previously for formal schedulability

0

1

2

3

4

5

6

7

1-
1-

1-
1

2-
2

1-
3/

2-
2

1-
3/

2-
1-

1
4/

1-
1-

2
4/

4/
2-

2
4/

4/
1-

3
4/

4/
4/

4

1-
1-

1-
1

2-
2

1-
3/

2-
2

1-
3/

2-
1-

1
4/

1-
1-

2
4/

4/
2-

2
4/

4/
1-

3
4/

4/
4/

4

1-
1-

1-
1

2-
2

1-
3/

2-
2

1-
3/

2-
1-

1
4/

1-
1-

2
4/

4/
2-

2
4/

4/
1-

3
4/

4/
4/

4

1 < U_scalar <= 2 2 < U_scalar <= 3 3 < U_scalar <= 4

Task-set bins

of

 ta
sk

-s
et

s

Figure 10: Configuration histogram.

tests: “SMT-EDF” and “SMT-ICNT”. “SMT-EDF” uses a real-time-
aware (but still not provably safe) thread selection policy that prior-
itizes tasks according to earliest deadlines [2], while “SMT-ICNT”
uses the classic ICOUNT [39] thread selection policy.

The run-time results for the statically analyzable architectures
are in agreement with our schedulability tests of the previous sub-
section. The slight differences between Figure 9 and Figure 11 are
due to differences between WCET estimates and actual execution
times: actual execution times with specific task-set inputs can nat-
urally be less than WCETs. For example, for the second utilization
bin in Figure 9(a), “RVMP” successfully schedules 16 out of the 25
task-sets. However, according to Figure 11(a), 1 additional task-set
– only for specific inputs – is successfully scheduled at run-time.

Not only is “RVMP” compatible with hard-real-time system de-
sign from the standpoint of a formal schedulability framework, but
it also performs comparably to the two dynamic SMT architectures
in the run-time comparison. For specific task-set inputs, “SMT-
EDF” successfully schedules at run-time no more than two extra
task-sets over what “RVMP” schedules. “SMT-ICNT” never suc-
cessfully schedules more task-sets at run-time than “RVMP” (al-
though they are also close).

These results indicate that, although “RVMP” is more coarse-
grain in its space/time partitioning than SMT, the partitioning is
flexible enough in practice to match SMT, thus successfully com-
bining both analyzability and high performance. With dynamic
SMT, on the other hand, there is no way to tell a priori which task-

10

25 25 25 25 25

17
15 15

5

18 17 16

9
7

3

16

7

1

9
6

8
10 10

20

7 8 9

16
18

22

9
11

18

24 24 25

16
19

14

25

10%

25%

50%

75%

100%

R
V

M
P

4x
1

2x
2

1x
4

S
M

T-
E

D
F

S
M

T-
IC

N
T

R
V

M
P

4x
1

2x
2

1x
4

S
M

T-
E

D
F

S
M

T-
IC

N
T

R
V

M
P

4x
1

2x
2

1x
4

S
M

T-
E

D
F

S
M

T-
IC

N
T

R
V

M
P

4x
1

2x
2

1x
4

S
M

T-
E

D
F

S
M

T-
IC

N
T

0 < U_scalar <= 1 1 < U_scalar <= 2 2 < U_scalar <= 3 3 < U_scalar <= 4

Task-set bins

S
uc

ce
ss

 r
at

e
(%

)
Failure
Success

(a) 4 tasks per task-set

25 25 25 25 25

15
13 13

3

16
14 13

7 7

1

14

5 4 4

10
12 12

22

9
11 12

18 18

24

11 12

20

24 25 25

20 20

13

25

10%

25%

50%

75%

100%

R
V

M
P

4x
1

2x
2

1x
4

S
M

T-
E

D
F

S
M

T-
IC

N
T

R
V

M
P

4x
1

2x
2

1x
4

S
M

T-
E

D
F

S
M

T-
IC

N
T

R
V

M
P

4x
1

2x
2

1x
4

S
M

T-
E

D
F

S
M

T-
IC

N
T

R
V

M
P

4x
1

2x
2

1x
4

S
M

T-
E

D
F

S
M

T-
IC

N
T

0 < U_scalar <= 1 1 < U_scalar <= 2 2 < U_scalar <= 3 3 < U_scalar <= 4

Task-set bins

S
uc

ce
ss

 r
at

e
(%

)

Failure
Success

(b) 8 tasks per task-set

Figure 11: Run-time experiments.

sets will succeed in the worst case. As such, it is unsafe to rely on
dynamic SMT in hard-real-time systems. A closer comparison of
“SMT-EDF” and “SMT-ICNT” provides run-time evidence of this
safety issue. We find that among 15 unique task-sets scheduled by
either “SMT-EDF” or “SMT-ICNT” for the third utilization bin in
Figure 11(b), 12 task-sets are scheduled by both, 2 are scheduled by
only “SMT-EDF”, and 1 is scheduled by only “SMT-ICNT”. The
latter 3 task-sets demonstrate that dynamic thread selection affects
schedulability, which then raises the deeper concern that any subtle
interference can throw things off.

6. RELATED WORK
Contemporary static worst-case timing analysis tools can derive

tight and safe WCETs of tasks running on in-order scalar [18, 27]
and in-order superscalar [29, 32] pipelines. Recent attempts to ana-
lyze out-of-order (OOO) scalar pipelines [26] are so far limited by
simplifying assumptions. Nonetheless, future techniques for ana-
lytically bounding OOO execution can certainly be exploited within
our RVMP framework, since RVMP guarantees non-interference
among in-order and OOO VPs alike, a key underlying assumption
of WCET analysis (tasks are analyzed individually).

Recent work explores switch-on-event multithreading (to hide
memory latency) in real-time systems [25, 9, 13]. Kreuzinger et
al. [25] do not provide an analytical framework for provably bound-
ing the amount of overlap among tasks, rather they only perform dy-
namic testing. Crowley and Baer [9] derive the combined WCET of
overlapped tasks. Their technique must consider all possible over-
lap scenarios among tasks and also it is not compatible with arbi-
trary scheduling policies. El-Haj-Mahmoud and Rotenberg [13] an-
alytically bound computation/memory overlap among tasks yield-
ing a closed-form schedulability test. The latter two analytical works
[9, 13], while safe in terms of worst-case analysis, are limited to
scalar pipelines with only one of the hardware threads selected for
execution on the pipeline at a time. This paper provides an analyt-
ical approach to multithreaded superscalar processors, a significant
performance leap.

Several papers [e.g.,36,38,14] evaluate policies to share resources
among threads in SMT processors, to address both throughput and
fairness. Cazorla et al. [6] provision SMT for quality-of-service
(QoS). However, no hard guarantees can be made regarding the
performance of threads, because of the dynamically-scheduled pro-
cessor underneath and also because no analytical framework is at-
tempted. Likewise, SMT resource sharing policies proposed by Jain
et al. [22] are applicable to soft-real-time systems only (schedula-

bility is evaluated via dynamic testing, and a task-set is considered
schedulable even if 5% of deadlines are missed).

Static resource partitioning has been previously proposed in the
context of VLIW architectures, such as XIMD [43]. Replicated
sequencers and homogeneous function units give XIMD true mul-
tiprocessor qualities, albeit with the ability to gang together FUs to
form different-width execution backends. Our work makes it possi-
ble to carve out arbitrary interference-free partitions in the context
of a contemporary superscalar processor with one shared fetch unit
and heterogeneous function units. And, we develop a novel real-
time scheduling formalism to go with the architecture.

Weld [35] dynamically combines instructions from a main thread
and a future speculative thread into one VLIW word. A similar
dynamic approach for combining instructions from different threads
into a single VLIW word is used by the M-Machine [15] and others
[23, 21]. Again, dynamic approaches are not suitable for hard-real-
time systems as there is no corresponding analytical framework.

Software thread integration (STI) [10] combines instructions from
dual threads (a non-real-time guest thread plus a real-time host thr-
ead) into one binary. Integrating threads is complicated by incom-
patible control-flow, limiting integration opportunities. Our decou-
pled architecture works with arbitrary task-sets and does not require
combined task compilation and analysis.

The Ubicom IP3023 microprocessor [40] was designed with ana-
lyzable high performance in mind. The IP3023 provides 8 hardware
threads that share a 10-stage in-order scalar pipeline with static
branch prediction and I- and D-scratchpad memories. A 64-entry
cyclic table, the hard-real-time table or HRT (a term we borrow in
this paper), specifies which thread to fetch from next, on a cycle-
by-cycle basis. Cycling through threads has certain elements of the
HEP machine [37]. The IP3023 is also quite similar to the scalar
DISC architecture [33], which assigns a statically-guaranteed per-
centage of processor cycles to execution streams. The IP3023 (and
precursors, HEP and DISC) is scalar and as such is not concerned
with providing interference-free different-width partitions based on
aggregating ways of a superscalar substrate. Our novel RVMP ar-
chitecture and real-time scheduling framework take Ubicom’s pro-
cessor strategy to a whole new level.

7. SUMMARY
We addressed the trade-off in real-time architectures between

high performance and analyzability. We proposed the novel Real-
time Virtual Multiprocessor (RVMP) architecture and matching real-
time scheduling analysis. RVMP virtualizes a single in-order super-

11

scalar processor into multiple interference-free different-sized vir-
tual processors, in both space and time. We proposed a simple real-
time scheduling approach that concentrates scheduling into a small
time interval, proving or disproving schedulability with very low
complexity and at the same time producing a compact space/time
schedule that orchestrates virtualization. RVMP successfully com-
bines the analyzability (hence real-time formalism) of multiple pro-
cessors with the flexibility (hence high performance) of simultane-
ous multithreading (SMT). Worst-case schedulability experiments
show that RVMP is able to schedule more task-sets than rigid mul-
tiprocessor counterparts. We also observed that RVMP’s advantage
increases as task-sets become more demanding. Moreover, RVMP
is as effective as an SMT processor in run-time experiments, mean-
while providing a real-time formalism that SMT does not currently
provide.

8. REFERENCES
[1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F. Mueller.

Virtual Simple Architecture (VISA): Exceeding the Complexity
Limit in Safe Real-Time Systems. In Proc. of the 30th Int’l Symp. on
Computer Architecture, pp. 350–361, June 2003.

[2] A. Anantaraman, K. Seth, E. Rotenberg, and F. Mueller. Exploiting
VISA for Higher Concurrency in Safe Real-Time Systems. Tech.
Report TR-2004-15, CS Dept., NC State Univ., May 2004.

[3] F. Bodin and I. Puaut. A WCET-Oriented Static Branch Prediction
Scheme for Real-Time Systems. In Proc. of the 17th Euromicro Conf.
on Real-Time Systems, July 2005.

[4] D. Burger, T. M. Austin, and S. Bennett. The Simplescalar Toolset,
Version 2. Tech. Report CS-TR-1997-1342, CS Dept., Univ. of
Wisconsin-Madison, July 1997.

[5] C-Lab. WCET Benchmarks. Available from
http://www.c-lab.de/index.php?id=462&L=3.

[6] F. J. Cazorla, A. Ramı́rez, M. Valero, P. M. W. Knijnenburg,
R. Sakellariou, and E. Fernández. QoS for High-Performance SMT
Processors in Embedded Systems. IEEE Micro, 24(4):24–31, 2004.

[7] B. Chazelle. The Bottom-Left Bin-Packing Heuristic: An Efficient
Implementation. IEEE Trans. on Computers, 32(8):697–707, 1983.

[8] D. Cormie. The ARM11 Microarchitecture. White paper, Apr. 2002.
[9] P. Crowley and J.-L. Baer. Worst-Case Execution Time Estimation of

Hardware-assisted Multithreaded Processors. In Proc. of the 2nd
Workshop on Network Processors, pp. 36–47, Feb. 2003.

[10] A. G. Dean and J. P. Shen. Techniques for Software Thread
Integration in Real-Time Embedded Systems. In Proc. of the 19th
Int’l Real-Time Systems Symp., pp. 322–333, Dec. 1998.

[11] J. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation
Algorithms for Bin Packing: A Survey. In Approximation Algorithms
for NP-Hard Problems, pp. 46–93. PWS Publishing Co., 1997.

[12] J. H. Edmondson, P. Rubinfeld, R. Preston, and V. Rajagopalan.
Superscalar Instruction Execution in the 21164 Alpha
Microprocessor. IEEE Micro, 15(2):33–43, 1995.

[13] A. El-Haj-Mahmoud and E. Rotenberg. Safely Exploiting
Multithreaded Processors to Tolerate Memory Latency in Real-Time
Systems. In Proc. of the 2004 Int’l Conf. on Compilers, Architecture,
and Synthesis for Embedded Systems, pp. 2–13, Sep. 2004.

[14] A. El-Moursy and D. H. Albonesi. Front-End Policies for Improved
Issue Efficiency in SMT Processors. In Proc. of the 9th Int’l Symp. on
High Performance Computer Architecture, pp. 31–42, Feb. 2003.

[15] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang,
Y. Gurevich, and W. S. Lee. The M-Machine Multicomputer. In Proc.
of the 28th Int’l Symp. on Microarchitecture, pp. 146–156, Nov. 1995.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In Proc. of the 4th Workshop on
Workload Characterization, Dec. 2001.

[17] T. Hand. Real-Time Systems Need Predictability. Computer Design
(RISC Supplement), pp. 57–59, Aug. 1989.

[18] M. G. Harmon, T. P. Baker, and D. B. Whalley. A Retargetable
Technique for Predicting Execution Time of Code Segments. In Proc.
of the 13th Int’l Real-Time Systems Symp., pp. 68–77, Dec. 1992.

[19] S. Hily and A. Seznec. Out-of-Order Execution may not be
Cost-Effective on Processors Featuring Simultaneous Multithreading.

In Proc. of the 5th Int’l Conf. on High Performance Computer
Architecture, p. 64, Jan. 1999.

[20] IBM Corp. IBM PowerPC 740 / PowerPC 750 RISC Microprocessor
User’s Manual. Feb. 1999.

[21] B. Iyer, S. Srinivasan, and B. L. Jacob. Extended Split-Issue:
Enabling Flexibility in the Hardware Implementation of NUAL
VLIW DSPs. In Proc. of the 31st Int’l Symp. on Computer
Architecture, pp. 364–375, June 2004.

[22] R. Jain, C. J. Hughes, and S. V. Adve. Soft Real-Time Scheduling on
Simultaneous Multithreaded Processors. In Proc. of the 23rd Int’l
Real-Time Systems Symp., pp. 134–145, Dec. 2002.

[23] S. Kaxiras, G. J. Narlikar, A. D. Berenbaum, and Z. Hu. Comparing
Power Consumption of an SMT and a CMP DSP for Mobile Phone
Workloads. In Proc. of the 2001 Int’l Conf. on Compilers, Arch., and
Syn. for Embedded Systems, pp. 211–220, Nov. 2001.

[24] D. B. Kirk. SMART (Strategic Memory Allocation for Real-Time)
Cache Design. In Proc. of the 10th Int’l Real-Time Systems Symp., pp.
229–239, Dec. 1989.

[25] J. Kreuzinger, A. Schulz, M. Pfeffer, and T. Ungerer. Real-Time
Scheduling on Multithreaded Processors. In Proc. of the 7th
Workshop on Real-Time Computing and Applications Symp., pp.
155–159, Dec. 2000.

[26] X. Li, A. Roychoudhury, and T. Mitra. Modeling Out-of-Order
Processors for Software Timing Analysis. In Proc. of the 25th Int’l
Real-Time Systems Symp., pp. 92–103, Dec. 2004.

[27] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient Microarchitecture
Modeling and Path Analysis for Real-Time Software. In Proc. of the
16th Int’l Real-Time Systems Symp., pp. 298–307, Dec. 1995.

[28] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New Strategies for
Assigning Real-Time Tasks to Multiprocessor Systems. IEEE Trans.
on Computers, 44(12):1429–1442, 1995.

[29] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A Worst Case Timing
Analysis Technique for Multiple-Issue Machines. In Proc. of the 19th
Int’l Real-Time Systems Symp., pp. 334–345, Dec. 1998.

[30] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal of the
ACM, 20(1):46–61, 1973.

[31] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[32] T. Lundqvist and P. Stenström. An Integrated Path and Timing

Analysis Method based on Cycle-Level Symbolic Execution.
Real-Time Systems, 17(2-3):183–207, 1999.

[33] M. D. Nemirovsky, F. Brewer, and R. C. Wood. DISC: Dynamic
Instruction Stream Computer. In Proc. of the 24th Int’l Symp. on
Microarchitecture, pp. 163–171, Nov. 1991.

[34] Y. Oh and S. H. Son. Fixed Priority Scheduling of Periodic Tasks on
Multiprocessor Systems. CS Tech. Report, Univ. of Virginia, 1995.

[35] E. Özer, T. M. Conte, and S. Sharma. Weld: A Multithreading
Technique Towards Latency-Tolerant VLIW Processors. In Proc. of
the 8th Int’l Conf. on High Perf. Comp., pp. 192–203, Dec. 2001.

[36] S. Raasch and S. Reinhardt. The Impact of Resource Partitioning on
SMT Processors. In Proc. of the 12th Int’l Conf. on Parallel
Architectures and Compilation Techniques, pp. 15–26, Sep. 2003.

[37] B. Smith. Architecture and Applications of the HEP Multiprocessor
Computer System. In Proc. of the 4th Symp. on Real Time Signal
Processing IV, pp. 241–248, 1981.

[38] N. Tuck and D. M. Tullsen. Initial Observations of the Simultaneous
Multithreading Pentium 4 Processor. In Proc. of the 12th Int’l Conf.
on Parallel Arch. and Compilation Tech., pp. 26–35, Sep. 2003.

[39] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.
Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor. In Proc. of the 23rd Int’l
Symp. on Computer Architecture, pp. 191–202, May 1996.

[40] Ubicom, Inc. The Ubicom IP3023 Wireless Network Processor.
White paper, Apr. 2003.

[41] S. Udayakumaran and R. Barua. Compiler-Decided Dynamic
Memory Allocation for Scratch-pad Based Embedded Systems. In
Proc. of the 2003 Int’l Conf. on Compilers, Architecture and
Synthesis for Embedded Systems, pp. 276–286, Sep. 2003.

[42] A. Wolfe. Software-Based Cache Partitioning for Real-Time
Applications. Computer Software Engineering, 2(3):315–327, 1994.

[43] A. Wolfe and J. P. Shen. A Variable Instruction Stream Extension to
the VLIW Architecture. In Proc. of the 4th Int’l Conf. on Arch.
Support for Prog. Lang. and Operating Systems, pp. 2–14, Apr. 1991.

12

http://www.c-lab.de/index.php?id=462&L=3

	Abstract
	1 Introduction
	1.1 RVMP architecture
	1.2 RVMP scheduling
	1.3 Contributions and paper outline

	2 RVMP Architecture
	2.1 Instruction fetch
	2.2 Instruction issue
	2.2.1 Background on 21164 issue logic
	2.2.2 RVMP issue logic

	2.3 Shadow buffers
	2.4 Hard real-time table (HRT)

	3 Real-time scheduling analysis
	3.1 Single task per virtual processor
	3.1.1 Generating space/time schedule
	3.1.2 Synthesizing HRT contents

	3.2 Multiple tasks per virtual processor

	4 Experimental methodology
	4.1 Static worst-case timing analysis
	4.2 Real-time tasks and task-sets

	5 Results
	5.1 Schedulability tests
	5.2 Run-time experiments

	6 Related work
	7 Summary
	8 References

