
Safely Exploiting Multithreaded Processors
to Tolerate Memory Latency in Real-Time Systems

Ali El-Haj-Mahmoud and Eric Rotenberg
Center for Embedded Systems Research

North Carolina State University, Raleigh, NC 27695-7256
(919) 513-2822

{aaelhaj,ericro}@ncsu.edu

ABSTRACT
A coarse-grain multithreaded processor can effectively hide long
memory latencies by quickly switching to an alternate task when
the active task issues a memory request, improving overall
throughput. However, dynamic switching cannot be safely
exploited to improve throughput in hard-real-time embedded
systems. The schedulability of a task-set (guaranteeing all tasks
meet deadlines) must be determined a priori using offline
schedulability tests. Any computation/memory overlap must be
statically accounted for. We develop a novel analytical
framework that bounds the overlap between computation of a
pipeline-resident-task and on-going memory transfers of other
tasks. A simple closed-form schedulability test is derived, that
only depends on the aggregate computation (C) and memory (M)
components of tasks. Namely, the technique does not require
specificity regarding the location of memory transfers within and
among tasks and avoids searching all task permutations for a
specific feasible schedule. To the best of our knowledge, this is
the first work to provide the necessary formalism for safely and
tractably exploiting coarse-grain multithreaded processors to
tolerate memory latency in hard-real-time systems, exceeding the
schedulability limits of classic real-time theory for uniprocessors.
Our techniques make it possible to capitalize on higher frequency
embedded processors, despite the widening processor-memory
speed gap. Experiments with task-sets from C-lab benchmarks
reveal improvement in the schedulability of task-sets, measured
as the ability to schedule previously infeasible task-sets or reduce
utilization for already feasible task-sets. We also demonstrate
proof-of-concept by deploying our method in a cycle-level
simulator of an ARM11-like embedded microprocessor
augmented with multiple register contexts, the same hardware
multithreading support available in Ubicom’s IP3023 embedded
microprocessor.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: real-
time and embedded systems; C.1.3 [Processor Architectures]:
Other Architecture Styles — pipeline processors.

General Terms
Design, Performance.

Keywords
Multithreading, memory latency, real-time systems,
schedulability test, worst-case execution time.

1. INTRODUCTION
Embedded microprocessors, like their desktop counterparts, are
continuously evolving to achieve higher performance targets. For
example, currently, the ARM11 embedded processor in a 0.13µ
process can be clocked as high as 500 MHz and is expected to
reach 1 GHz in a 0.10µ process [3]. At this rate, the processor-
memory speed gap that is so noticeable in high-performance
desktop/laptop computers will resurface in embedded systems.

Multithreaded processors [1] [9] [20] [22] [23] [25] provide a means
to scale system performance despite a growing processor-memory
speed gap, by overlapping memory accesses of stalled threads
with computation of other threads. Moreover, multithreading is
especially pertinent to real-time embedded systems because these
systems are characterized by task-sets with multiple periodic
tasks, thereby providing thread-level parallelism and the
opportunity to exploit multithreading even beyond what many
desktop systems can [10].

There are many different forms of multithreaded processors,
distinguished by their flexibility and granularity in overlapping
instructions from multiple threads [25]. In this paper, we focus
on hiding memory access latency, so we consider a coarse-grain
form of multithreading whereby only a single thread uses the
pipeline at a time and the current thread relinquishes the pipeline
to another thread when it performs a memory access (e.g., [22]),
sometimes called switch-on-event blocked multithreading [25],
where the event is a memory access. The typical hardware
support in this case is multiple register contexts for quickly
switching the pipeline among threads. Ubicom’s IP3023
processor [24], a scalar in-order embedded processor introduced
in 2003, provides such support (8 register contexts). Although
the IP3023 can also interleave instructions from multiple threads
on a cycle-by-cycle basis, we do not explore this aspect in this
paper (we consider only zero-cycle context-switching capability).

Multithreaded processors dynamically exploit computation/
memory overlap among tasks when overlap opportunities arise,
which results in higher performance on average. However, no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’04, September 22–25, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-890-3/04/0009…$5.00.

guarantee can be given regarding the worst-case performance of
the system. This is unsafe and unacceptable in a hard real-time
embedded system, where all tasks must be statically guaranteed
to meet their respective deadlines [5] [11] [17], by performing an
offline schedulability test. Thus, any potential overlap must be
analytically bounded and accounted for statically.

Statically bounding computation/memory overlap is not easy for a
multithreaded processor that dynamically switches on memory
accesses. First, the exact positioning of memory transfers within
tasks must be known a priori. Then, all permutations of all tasks
in a task-set must be examined for possible overlap opportunity.
This exhaustive search may reveal a safe static schedule that can
then be used afterwards at run-time. This approach is impractical
and, most likely, intractable. Instead, a simple closed-form
mathematical test is desired, that does not require searching for a
specific schedule.

The crux of the problem is that switching only when actual
memory accesses occur does not totally decouple otherwise
independent threads. In fact, it introduces complex dependences
among tasks from the standpoint of schedulability analysis, i.e.,
deducing when alternate tasks will be switched to. In addition to
making analysis intractable, these false scheduling dependences
needlessly defer future memory accesses of otherwise
independent threads, squandering overlap opportunities.

Thus, the key lies in totally decoupling independent threads and
this can be achieved by switching threads at frequent and regular
intervals, via weighted-round-robin (WRR) scheduling [17].
WRR provides the needed scheduling policy on top of which we
can build a novel analytical framework that safely and tractably
models computation/memory overlap among multiple tasks,
exceeding the schedulability limits of classic real-time theory for
uniprocessors. In WRR, a task is resumed and then preempted
once every round. We set the round equal to the memory latency.
If a memory access is initiated before the preemption, then a
precisely determinable fraction of the memory access is hidden
with other tasks’ computation. Moreover, if a memory access is
not initiated before the preemption, system performance is no
worse for it: assuming zero-overhead context-switching,
controlled disruptions of a task do not affect its aggregate
utilization of the processor, maintaining overall schedulability of
the task-set.

Prior work with respect to WRR falls into three categories. (1)
Fine-grain WRR has been applied in a non-real-time context
(e.g., the HEP machine [20]), thus no worst-case schedulability
formalism is developed. (2) The guaranteed-percentage policy
has been applied to real-time scheduling, but only in the sense of
conventional context-switching such that there is no attempt to
overlap tasks’ executions [17]. (3) The guaranteed-percentage
policy and other classic policies have been evaluated in a
multithreaded processor, but no formalism is provided to safely
and tractably bound computation/memory overlap, i.e., no worst-
case schedulability formalism is developed [7] [15].

To the best of our knowledge, this is the first work to provide the
necessary formalism for safely/tractably exploiting a coarse-grain
multithreaded processor to tolerate memory latency in hard-real-
time systems. Key facets of this work include:

(1) For task-sets with a memory time component, our framework
provides a safe and tractable means for exceeding the
schedulability limits of classic real-time theory for
uniprocessors. This means task-sets that were previously
unschedulable may become schedulable, or, for already-
schedulable task-sets, new tasks can be added and/or rates
increased. Moreover, for task-sets with little or no memory
time, schedulability is not lessened.

(2) We derive a closed-form schedulability test. This means a
very simple mathematical test can be used to determine
whether a hard-real-time task-set is schedulable, in the
context of WRR on a multithreaded processor. The test is
based only on the periods and worst-case execution times
(WCET) of tasks. Note that these most basic task parameters
are the basis for all classic real-time scheduling theory, and
are therefore already available. This also means that our
analytical framework is compatible with real-time system
design environments.

(3) Our framework does not require any knowledge of where
memory accesses occur within and among tasks. We only
need to know the worst-case number of memory accesses in
each task, which is already available as a byproduct of the
separate and orthogonal worst-case execution time (WCET)
analysis phase [2] [12] [18] that underpins schedulability
analysis for all hard real-time systems. Moreover, our
technique is independent of the type of level-1 memory
structure – hardware-managed cache vs. software-managed
scratchpad memory – since the conventional WCET analysis
phase employs the necessary methods for bounding the worst-
case number of memory accesses for either structure [12].

(4) Our analytical framework accounts for practical memory
system issues, such as the degree of parallelism in the
memory system (memory banks) and serialization on the bus.

To sum up, our approach provides a path towards capitalizing on
higher frequency processors in the real-time embedded systems
domain, in spite of lagging memory speeds. Our framework is
safe in that it statically bounds the amount of overlap among
tasks under all possible scenarios. In addition, it is tractable, in
that worst-case schedulability can be confirmed/disconfirmed
with a closed-form schedulability test that we derive. This test is
based only on the memory-to-computation ratio of each task
individually, without having to consider the exact positioning of
memory requests within and among tasks.

The rest of this paper is organized as follows. In Section 2, we
give a brief background on classic real-time scheduling, which
does not take into consideration any execution overlap. In Section
 3, we discuss the issues involved in boundedly and tractably
overlapping memory latency on a multithreaded processor. In
Section 4, we derive a closed-form schedulability test in the
context of weighted-round-robin, and discuss assigning safe
weights to tasks to guarantee meeting deadlines. Section 5
outlines our experimental methodology, chiefly characterizing
our task-sets and describing our simulation infrastructure.
Section 6 presents schedulability experiments for the task-sets,
augmented with simulation experiments for demonstration.
Section 7 reviews related work and we summarize in Section 8.

2. BACKGROUND ON CLASSIC REAL-
TIME THEORY FOR UNIPROCESSORS
A hard-real-time embedded system is characterized by a
collection of recurring tasks, called a task-set, and a key goal is
to determine a priori whether or not the task-set is schedulable
as a whole. Each task is characterized by three parameters that
are needed to determine schedulability:

1. Period: New instances of the task are “released” – made
available for execution – at regular time intervals equal to the
period of the task. For example, in Figure 1, the periods of
tasks A and B are 8 and 4 time units, respectively.

2. Deadline: This is the time by which an instance of the task
must complete. For tractable schedulability analysis [17], the
deadline is often set equal to the period, meaning a task
instance must complete before the next instance is released,
as shown in Figure 1 for tasks A and B.

3. Worst-case execution time (WCET): The WCET is an upper
bound on the execution time of an instance of the task, and is
guaranteed never to be exceeded. For example, in Figure 1,
the WCETs of tasks A and B are 2 and 3 time units,
respectively.

 iperiod iWCET i

i
i period

WCET
U =

A 8 2 0.25
B 4 3 0.75

A1 A2

B1

periodA

Task A

Task B

time

B2 B3 B4

releaseA

releaseB

periodB

deadlineB

EDF
schedule

B1 B2 B3 B4A1 A2

deadlineA

Feasibility Test

1≤=∑
i i

i

period

WCET
U

Figure 1. Example task-set composed of two periodic hard-
real-time tasks.

Interestingly, for well-studied scheduling policies, the
schedulability of a task-set can be determined a priori using
offline tests that require only knowledge of tasks’ periods and
WCETs. For example, Liu and Layland [16] derived classic
results for the earliest-deadline-first (EDF) and other
uniprocessor scheduling policies. Most interestingly, they
derived a very simple test for determining whether or not a task-
set is schedulable using the EDF policy, namely that the sum of
all tasks’ utilizations must be less than or equal to 1 (indicating
that the processor is not over-subscribed). The utilization of a
task is the fraction of time that the processor spends executing
the task. In the worst case, the utilization of a task i is its WCET
divided by its period:

i

i
i period

WCET
U = . Thus, the schedulability test

is simply: 1≤=∑
i i

i
total period

WCET
U . The example task-set in Figure 1

is schedulable because the sum of the tasks’ utilizations is 0.25 +
0.75 = 1. At run-time, the real-time operating system (RTOS)

will dynamically prioritize currently-released tasks based on
earliest deadlines, producing the schedule at the bottom of Figure
1.

A key basis for the Liu and Layland result and the whole of
classic real-time scheduling theory is treating the processor as a
single indivisible resource. Although the processor is shared
among tasks and tasks may preempt one another (context-
switching), it is assumed that only one task has possession of the
entire processor at a time. Using this model, memory access
latency from one task cannot be overlapped with computation
from another task. Essentially, this assumption treats a
multithreaded processor as a non-multithreaded one, missing the
opportunity for bridging the processor-memory speed gap in the
real-time domain.

A formalism that accounts for overlap of tasks’ WCETs can
effectively reduce perceived worst-case utilization, and thereby
make task-sets more schedulable. Task-sets that previously were
not schedulable may become schedulable, more tasks can be
added to already-schedulable task-sets, or periods of tasks can be
reduced (rates increased) in already-schedulable task-sets.

3. MOTIVATION FOR DETERMINISTIC
SWITCHING
In this section, we illustrate the complexity of bounding overlap
on a multithreaded processor that uses a dynamic switch-on-
event approach for tolerating memory latency. We then describe
how a deterministic switching policy decouples independent
threads, providing a foundation for developing a tractable
analytical framework.

3.1 Intractability of Dynamic Switching
Figure 2(a) shows a task-set composed of two tasks, A and B,
each with utilizations of 1 (WCETA=periodA, WCETB=periodB).
The EDF schedulability test for this task-set fails on a
uniprocessor system (worst-case utilization = 2, which is greater
than the uniprocessor utilization limit of 1). However, this task-
set can be scheduled on a multithreaded processor if memory
accesses from one task are overlapped with pipeline computation
from the other task, and vice versa. Figure 2(b) shows such an
example. In the example, the processor supports multiple
pending memory requests, i.e., it has multiple memory transfer
units (MTU) if using a software-managed scratchpad memory, or
multiple miss status handling registers (MSHR) if using a
hardware-managed cache. Tasks A and B each have two memory
transfers (“m”), interleaved with computation as shown in Figure
2(b). Each task has access to a private memory transfer unit (A
uses MTU1, B uses MTU2), and the processor dynamically
switches the active thread when a memory access is performed.
A feasible schedule can be found whereby all of task A’s memory
component overlaps with task B’s computation component, and
vice versa. In this way, the task-set is schedulable using this
uniprocessor.

However, suppose we replace task B with task B’, as shown in
Figure 2(c): they have the same WCET breakdown in terms of
computation versus memory time, but the memory and
computation components are interleaved differently in the new
task B’. Whereas the task-set {A, B} is schedulable, task-set {A,

B’} is not (B’ misses its deadline as shown in the figure), even
though tasks B and B’ have the same memory-to-computation
ratio.

Time

A1 A2

periodA

Task A

B1 B2Task B

periodB

m m

m m

Pipeline

m m

m m

deadline

A

B

m m

m m

Pipeline

m m

m m

deadline

A

B’

MTU1

MTU2

MTU1

MTU2

(a) (b) (c)

Figure 2. Overlapping execution of different task-sets on a
multithreaded processor. (a) Task-set composed of tasks A
and B (WCETA=periodA=WCETB=periodB). (b) A and B
with two memory transfers each (“m”) are schedulable
because of computation-memory overlap. (c) B’ is identical
to B except for positioning of memory transfers, and is not
schedulable with A.

We conclude that a simple utilization-based schedulability test –
like the EDF test – is not enough to determine schedulability of a
task-set on a multithreaded processor using a dynamic switch-on-
event policy. Such a schedulability test would only consider the
relative proportions of memory and computation time in each
task’s WCET, without regard for any specific positioning of
computation and memory among tasks. Yet, the interleaving of
memory and computation must also be considered, in which case
there is no closed-form schedulability test but rather an explicit
and potentially exhaustive search for a valid schedule.

3.2 Tractability through Deterministic
Switching
The previous subsection underscores the complexity of bounding
memory overlap using dynamic context-switching. We can
tractably bound the amount of overlap between memory time of a
task and computation time of other tasks by forcibly creating
overlap opportunities. This is achieved by forcing task switches
in a repeating weighted-round-robin (WRR) sequence. A round
is a fixed time interval during which each task is given a single
time-slot for execution on the pipeline. Thus, each task has
possession of the pipeline for a certain fraction of each round –
the task’s duty cycle – as shown in Figure 3 for four tasks (T1-
T4).

By enforcing duty cycles, we dilate the WCETs of all tasks (since
tasks are forcibly preempted), but this is offset by the fact that a
guaranteed duty cycle effectively gives each task its own, private
pipeline (or virtual processor), as shown in Figure 3. We simply
need to ensure that (1) the duty cycle of each task is sufficient to
complete the dilated task before its deadline on its virtual
processor (i.e., satisfy the condition: dilated WCET ≤ period),
and (2) the sum of all tasks’ duty cycles is less than or equal to 1,
tying virtual processors back to the physical processor from
which they derive. In fact, these two conditions are the
schedulability test.

Now, we just need to determine the amount by which each task’s
WCET is dilated based on its duty cycle, for evaluating condition
(1) above. A forced preemption can occur during computation or
during a memory transfer. If it happens during computation,
WCET is dilated because the task becomes completely idle,
doing neither computation nor a memory transfer. This scenario
is highlighted in Figure 3 for the first forced preemption of T4.
However, if a task manages to initiate a memory transfer before
being forcibly preempted, the transfer will continue in spite of
the forced preemption, thanks to the task’s private MTU. The
key to our approach is to set the round equal to the latency of a
memory transfer. This ensures that a memory transfer, regardless
of where it occurs within a task, will begin and end in
consecutive duty cycles of the task, as shown for rounds i+1 and
i+2 of T4 in Figure 3. In this way, WCET is not dilated by forced
preemptions during memory transfers, since finishing a memory
transfer is marked by immediate resumption of computation.
Moreover, this result holds independent of where memory
transfers occur within the task. This is significant because it
means we can mathematically model a task as being composed of
two separable time components, total computation time C and
total memory time M, where C is dilated by forced preemptions
but M is not. And, it is easy to determine the factor by which C is
dilated: C is dilated by the inverse of the duty cycle (e.g., if duty
cycle = 0.5, computation time doubles). Thus, WCET simply
expands from [C + M] to [C/d + M], where d is the duty cycle.

T4

round = memory latency

T1

T4

T2 T3 T4

forced pre-emption
dilate WCET Memory transfer operation

Virt. Proc. 1

Round i Round i+1 Round i+2

Virt. Proc. 2

Virt. Proc. 3

Virt. Proc. 4

T1

T2

T4

T1 T2 T1 T2

T1

T2

T3 T4 T3 T4

T3

T4

T3

T4

T1

T2

T3

Figure 3. Exploiting WRR scheduling for bounding overlap.

A simple closed-form schedulability test results. First, we ensure
schedulability of each task on its own virtual processor by
selecting the minimum duty cycle such that its dilated WCET is
less than its period (deadline), i.e., select minimum d (where d ≤
1) such that [C/d + M] ≤ period. Second, we evaluate overall
schedulability on the physical processor by checking whether or
not the sum of all tasks’ duty cycles is less than or equal to 1.

4. ANALYTICAL FRAMEWORK
For safety guarantees in hard-real-time systems, we must
statically bound the amount of possible overlap among tasks. At
the same time, we want to avoid exhaustively searching potential
scenarios for proving/disproving worst-case schedulability of
task-sets. In this section, we derive closed-form schedulability
tests for our platform (based on the WRR scheduling policy as
described in Section 3.2) to achieve the two goals of safety and
tractability.

Our analysis begins with the specific case of a single task per
virtual processor (Section 4.1). We then generalize this result to
allow for multiple tasks per virtual processor (Section 4.2),
enabling the use of task-sets with arbitrary numbers of tasks.

Note that our analysis is with respect to the number of virtual
processors. This provides an abstraction of the underlying
hardware that in no way places constraints on either the
processor or memory system design. Rather, the opposite is true,
i.e., the underlying processor plus memory system
implementation dictates the number of available virtual
processors and the analytical model is configured accordingly. In
high-level terms, the number of virtual processors reflects the
overall thread-level and memory-level parallelism in the system.
Specifically, the number of virtual processors is the minimum of
(1) the number of register contexts, (2) the number of pending
memory requests (i.e., number of parallel MTUs or MSHRs),
and (3) the number of DRAM banks (for parallel DRAM
accesses). In Section 4.3.2, we extend the analytical framework
to decouple the number of virtual processors from the number of
parallel DRAM banks, so that we can capitalize on some overlap
opportunity even with limited parallelism in the DRAM. In
Section 4.3.1, we describe how to safely account for serialization
of transfers on the memory bus.

4.1 Single Task per Virtual Processor
With WRR, each task is allocated a fixed time-slot in each
round. The fraction of each round allocated to a task is called the
task’s duty cycle, d, where 0 < d ≤ 1. Recall, in Figure 3 of
Section 3.2, we showed an instance of task T4 executing on the
pipeline during its duty cycles. Notice, we set the round equal to
the memory transfer latency, ensuring that individual memory
transfers begin and end in consecutive duty cycles.

We divide the task’s WCET into computation (C) and memory
(M) components. The number of whole rounds (i.e., assuming no
disruptions by memory transfers in the middle of duty cycles)
needed to complete the computation component of a task is its
computation time divided by the time per round allocated to the
task, or ()⎡ ⎤RdCN ×= , where C is aggregate computation

time, d is the duty cycle, R is the round time, and N is the
number of whole rounds. This expression holds in spite of
disruptions by memory transfers and is independent of when
these disruptions occur. When computation is disrupted during a
duty cycle by a memory transfer, computation resumes at the
corresponding point in the next duty cycle, as shown in Figure 3
in Section 3.2. Since we separate out memory time explicitly, the
effect is to concatenate complementary computation portions of
adjacent duty cycles, as if the disruptions had not occurred.

The time needed to finish the computation component is the
number of whole rounds multiplied by the round time, or

()⎡ ⎤ RRdCRN ××=× . Since individual memory transfers

always begin and end in consecutive duty cycles, we ensure that
there is no idle time following transfers. Therefore, aggregate
memory time M is not dilated. Thus, we get the following
expression for WCET’, the dilated WCET:

()⎡ ⎤ MRRdCWCET +××=' .

The ceiling function ⎡ ⎤ is a necessary precaution. An interval of

time equal to the round is guaranteed to contain one full duty
cycle (in aggregate), regardless of where the interval starts and
ends. The ceiling function produces an integer number of rounds,
N, guaranteeing N duty cycles regardless of where the task is
released.

Providing each task with a fixed time-slot on the pipeline (for
computation) and a dedicated MTU (for memory transfers) is
like assigning each task to a virtual processor (VP), for which
there is no contention. Thus, assuming one task per virtual
processor, the only constraint within a virtual processor is that
the task’s dilated WCET must be less than or equal to its period,
so that the current instance of the task finishes before the next
instance is released:

Equation 1. ()⎡ ⎤ periodMRRdC ≤+××

It turns out that, if we constrain the period to be an integer
multiple of the round, then we can correctly remove the ceiling
function from the left-hand side of Equation 1 (this is confirmed,
below). We do not sacrifice system timing specifications if we
replace the period in Equation 1 with a tighter period that is an
integer multiple of the round, i.e., ⎣ ⎦ RRperiodperiod ×=' . If we

remove the ceiling function from Equation 1, replace the period
with period’ (tighter constraint), and solve for d, we get

()MperiodCd −≥ ' . Since we want to minimize the duty cycle

(i.e., minimize utilization of the physical pipeline by this task),
we solve for d as follows:

Equation 2. ()MperiodCd −= '

We now substitute this d back into Equation 1 to confirm that
initially removing the ceiling function is correct, assuming the
modified period. This exercise yields the following:
()⎡ ⎤ () RMperiodRMperiod −≤− '' . This condition only holds if

both period’ and M are integer multiples of R, which is the case:
(1) the round R is equal to the memory latency, and M is an
integer multiple of the memory latency; (2) we defined period’ to
be an integer multiple of the round R.

Equation 2 ensures schedulability of individual tasks on their
virtual processors. We determine overall schedulability of the
task-set as a whole by checking whether or not the sum of all
tasks’ duty cycles is less than or equal to 1.

Equation 3. 1≤∑
i

id

The impact of using period’ versus period is minor because the
round is typically a small fraction of the period. For example, the
WCET of our smallest task (lms) is 0.16 ms, or 160,000 cycles at
1 GHz. Even with the tightest possible period of 0.16 ms, and a
round of 100 cycles (memory latency), the round is less than
1/1000 the period.

A more significant effect (but still relatively small) is rounding
up Rd × to be an integer number of cycles of the round, during
which the task is active. Duty cycle rounding is only a problem
for a task-set that is barely feasible using conventional EDF

scheduling and that does not have a perceptible memory
component. With no memory to overlap, duty cycle rounding is
enough to make the task-set barely infeasible using adapted
WRR. In this case, we can simply revert to using conventional
EDF scheduling.

4.2 Multiple Tasks per Virtual Processor
The analysis in the previous subsection assumes there is one
real-time task per virtual processor. Now, we extend the results
to the more general case of supporting more than one task per
virtual processor (e.g., when the number of hardware contexts is
less than the number of tasks in a task-set).

When there are multiple tasks on a single virtual processor, their
WCETs cannot be overlapped because there is only one register
context, one memory transfer unit, etc. That is, a virtual
processor is logically a conventional single-threaded
uniprocessor. As such, conventional uniprocessor scheduling is
required within the virtual processor – we use conventional EDF.

The duty cycle expression in Equation 2 is generalized by
realizing that a duty cycle d is associated with a virtual
processor, not any particular task. WCETs of all tasks on a
virtual processor are dilated by that virtual processor’s duty cycle
d. Only their computation components are dilated, yielding the
following condition for EDF schedulability of t tasks on a single
virtual processor.

Equation 4.
1

2

2
2

1

1
1

≤
⎟
⎠

⎞
⎜
⎝

⎛ +
++

⎟
⎠

⎞
⎜
⎝

⎛ +
+

⎟
⎠

⎞
⎜
⎝

⎛ +

t

t
t

P

M
d

C

P

M
d

C

P

M
d

C

L

Each term in the above expression is the modified (perceived)
utilization of a single task, i.e., dilated WCET divided by period
(P), and EDF schedulability is assured if the sum of all tasks’
modified utilizations is less than or equal to 1. Using exactly 1
will minimize d. Equation 4 can be simplified as follows.

Equation 5.
122

22
11

11 =⎟
⎠

⎞
⎜
⎝

⎛ +++⎟
⎠

⎞
⎜
⎝

⎛ ++⎟
⎠

⎞
⎜
⎝

⎛ + tt
tt PM

d

PC
PM

d

PC
PM

d

PC
L

Solving for d yields the generalized result below.

Equation 6.

∑

∑

=

=

−
=

t

j j

j

t

j j

j

P

M

P

C

d

1

1

1

The schedulability test of Equation 3 still applies. Note that the
specialized Equation 2 is consistent with the general form
Equation 6 for t=1.

4.3 Modeling the Memory System
4.3.1 Modeling Bus Transfer Time
So far, we have separated WCET into computation (C) and
memory (M) components. M only accounts for the raw DRAM
access time. However, a bus transfer accompanies every DRAM
access, which is not accounted for by either the C or M
components. We introduce another WCET component, B, to
reflect aggregate bus time of a task: the total time spent by a task
transferring its memory blocks to/from DRAM.

Bus transfer requests from multiple virtual processors are
serialized on the memory bus. In the worst case, a virtual

processor may have to wait for (n-1) other transfers to complete
before it can own the bus, one for each of the other virtual
processors (assuming there are n virtual processors). Thus, in the
worst-case, a transfer takes n times as long to complete. Whereas
the aggregate bus time for the baseline system is B, the aggregate
bus time for the system that exploits overlap is n*B. Thus, a
tradeoff is revealed: the aggregate bus time of a task is extended
(n*B) but we can overlap aggregate memory time plus bus time
of the task with computation of other tasks.

The dilated WCET in this case will be
)()(' BnMdCWCET ×++= and the duty cycle

()BnMperiodCd ×−−= ' .

Using this model, the round is set equal to the latency of one
DRAM access plus the extended (times n) bus transfer time of
one memory block.

Note that the base case does not suffer from this worst-case
extension of bus time. Bus conflicts among different tasks cannot
occur because all tasks are serialized anyway (no overlap of
tasks’ WCETs).

4.3.2 Modeling Memory Banks
We first consider the case where the number of virtual processors
is equal to the number of DRAM banks. We prevent bank
conflicts from occurring by mapping virtual processors to DRAM
banks, one-to-one. For example, virtual processor 1 is mapped to
bank 1, meaning any tasks that run on virtual processor 1 have
their instructions/data allocated to bank 1. Tasks on the same
virtual processor are serialized on that virtual processor; hence
allocating them to the same bank does not introduce conflicts.
Tasks on different virtual processors are prevented from
conflicting by ensuring their instructions/data are allocated to
different banks, corresponding to the virtual processors. Thus,
DRAM parallelism is fully exploited.

Next, we extend our analysis to decouple the number of virtual
processors from the number of DRAM banks. Thus, the number
of virtual processors is governed only by characteristics of the
processor core (namely, number of register contexts and
MTUs/MSHRs).

If the number of DRAM banks is less than the number of virtual
processors, then multiple virtual processors share the same
DRAM bank and conflicts may occur. In this case, the memory
access latency from the perspective of a virtual processor is
extended, in the worst case, by a factor s, where s is the number
of virtual processors sharing a single bank. Each access from the
virtual processor assumes that the bank is already busy, and has
to wait for (s-1) other accesses, in the worst-case, to finish before
it can proceed. The total memory component M is thus extended
to s*M.

We can now express the dilated WCET as
())(' BnMsdCWCET ×+×+= and the duty cycle as

()BnMsperiodCd ×−×−= ' . As with bus conflicts, bank

conflicts reveal a tradeoff: the aggregate memory time is
extended to s*M but we can overlap it with computation of other
tasks.

Using this model, the round is set equal to the extended (times s)
DRAM access latency plus the extended (times n) bus transfer
time of one memory block.

Note that the base case does not suffer from this worst-case
memory latency extension. Bank conflicts among different tasks
cannot occur because all tasks are serialized anyway (no overlap
of tasks’ WCETs).

5. EXPERIMENTAL METHODOLOGY
The primary experiments do not involve simulation since
schedulability analysis is based solely on schedulability tests for
the baseline EDF and our adapted WRR. WCETs and periods of
tasks are inputs to these schedulability tests.

Static worst-case timing analysis is used to derive a task’s
WCET on a particular microarchitecture. Thus, we first
summarize the microarchitecture in Section 5.1. Static worst-case
timing analysis is covered briefly in Section 5.2. We then
characterize the tasks and task-sets used in our analytical
experiments, in Section 5.3.

We also implemented a detailed cycle-level simulator of the
microarchitecture as a run-time demonstration vehicle. The
simulator is covered in Section 5.4.

5.1 Microarchitecture
Table 1 summarizes the microarchitecture model assumed for
both deriving WCETs and performing simulations. The processor
core is modeled after the ARM11 scalar in-order 8-stage pipeline
 [3], with slight modifications to support the Simplescalar PISA
ISA [4]. The processor provides four register contexts. Each
thread also has a special-purpose register containing the number
of cycles the thread is active during each round. WRR scheduling
is performed by hardware: when a thread is switched to, a
counter is loaded with the contents of that thread’s cycle-count
register. The counter counts down, and, when it reaches zero, the
next thread in line is scheduled.

Table 1. Microarchitecture configuration.

Simplescalar PISA ISA
Scalar, in-order, 8-stage pipeline (ARM11)
Static (BT/FNT) branch prediction
Misprediction penalty = 6 cycles
4 register contexts

Processor
Core

4 memory transfer units (MTU)
Address generation = 1 cycle
Integer ALU ops = 3 cycles (ARM11)

Core
Latencies

Complex ops = MIPS R10K latencies

Level-1
Scratchpad
Memories
(on-chip)

(based on Ubicom IP3023)
Instruction scratchpad: 256KB
Data scratchpad: 64KB
Block size: 128 bytes
Access time: 2 cycles
banks: default = 4, also varied (1, 2, & 4)
DRAM access time = 50 ns/block

Memory
System

Bus transfer time = 64 ns/block

When the current task is preempted to make way for the next
task, the next task must proceed unobstructed because
schedulability analysis assumes a guaranteed duty cycle for each
task. However, the instruction in the issue stage of the pipeline
may be stalled waiting for a long-latency instruction (e.g.,
floating-point arithmetic) to produce one of its source operands.
One solution is to squash the instructions that are in the front-
end stages of the pipeline (4 instructions in the case of ARM-11)
during each task switch, so that the next task may proceed
unobstructed. However, this introduces a 4-cycle penalty for
resuming tasks (to re-fetch and re-decode the squashed
instructions). If there are four tasks and only, say, 50 cycles in a
round, then resuming tasks consumes 16 cycles out of the 50-
cycle round. Instead of squashing instructions in the front-end of
the pipeline, we augment the front-end of the pipeline with four
shadow latches per pipeline latch (one shadow latch per virtual
processor). When the current task is preempted, its front-end
pipeline state is checkpointed by one set of the shadow latches.
Instructions from the next task proceed through the front-end of
the pipeline unobstructed. When the preempted task is resumed,
it copies its saved state from the shadow latches back into the
pipeline latches, continuing execution from exactly where it had
left off.

The memory hierarchy consists of two level-1 scratchpad
memories modeled after Ubicom’s IP3023 [24], a 256KB I-
scratchpad for instructions and a 64KB D-scratchpad for data,
backed by off-chip DRAM. Scratchpad memories are essentially
software-managed caches. The ISA is augmented with three
types of memory transfer instructions: fetch instruction block
(retrieve a block from off-chip memory to the I-scratchpad), fetch
data block (retrieve a block from off-chip memory to the D-
scratchpad), and flush data block (write-back a block from the D-
scratchpad to off-chip memory). Memory transfer instructions
specify an off-chip block address and a scratchpad block address.
Blocks are 128 bytes.

Memory transfer instructions are executed by memory transfer
units (MTU). There are four MTUs. As explained in Section 4,
the combination of four register contexts and four MTUs
provides four available virtual processors.

A memory transfer consists of two phases, the DRAM access and
the memory bus transfer (transferring bytes on the bus).
Latencies for each are given in Table 1. The default DRAM has
four banks that can be accessed in parallel, although we also
perform experiments varying the number of DRAM banks (1, 2,
and 4 banks).

The I-scratchpad and D-scratchpad are statically partitioned
among tasks in the task-set. Cache partitioning (or scratchpad
partitioning, in our case) is a commonly used technique for
eliminating conflicts among tasks [14] [19] [26], simplifying static
worst-case timing analysis. In short, partitioning is needed for
safe real-time scheduling regardless of the policy (baseline EDF
or our adapted WRR).

Memory transfer instructions are manually inserted in the tasks
(by the programmer) to fetch instruction/data blocks from off-
chip memory to the scratchpads before they are accessed by the
instruction fetch unit and by loads/stores, ensuring these

references always “hit”. Dirty data blocks that will be re-
referenced later are explicitly written back to main memory when
they need to be displaced to make room for new blocks.

5.2 Static Worst-Case Timing Analysis
Although we have access to static worst-case timing analysis
tools capable of bounding WCETs of hard-real-time tasks on
simple scalar pipelines, it is beyond the scope of this paper (and
orthogonal to it) to port one of these tools to model the
microarchitecture used in this paper. Thus, we performed manual
analysis assisted with simulation [18] to safely yet tightly bound
tasks’ WCETs.

Our manual analysis is procedurally similar to the bottom-up
fixed-point approach described by others [12]. We find longest
timing paths within inner loops and leaf functions, and work
upwards towards outer loops and functions at higher levels.
Forward branches are handled by selecting the longest of two
timing paths, after padding the taken path with the misprediction
penalty (6 cycles), since static branch prediction predicts forward
branches as always not-taken. Backward branches are handled by
padding the loop continuation with the misprediction penalty,
since static branch prediction predicts backward branches as
always taken. After manually identifying longest timing paths,
we use simulation assistance to tightly model overlapped
execution of instructions along these paths.

After bounding the computation time component (C) of WCET,
we add on the memory time component (M) and the bus time
component (B) based on the total number of programmatic
memory transfers in the task.

We explicitly avoided placing memory transfer instructions in
conditional paths (i.e., hammocks), to make aggregate
computation time and aggregate memory time of WCET easily
separable. If a memory transfer instruction forms one side of a
hammock and computation the other side, timing analysis will
include the hammock in either C or M depending on which side
of the hammock takes more time. However, the two sides are
affected differently by duty cycles – M is not dilated whereas C
is. Thus, if we allow memory transfer instructions inside
hammocks, WCET analysis may have to be modified. A simple
solution is to always include hammocks in C, trading overlap
opportunity for safe analysis. Another simple solution is to
logically include the memory transfer in both sides, which has
the safe effect of moving the transfer latency in series with and
out of the hammock. Finally, worst-case timing analysis could be
explicitly modified to work in tandem with the WRR scheduling,
taking into account the duty cycle of a task (WCET
parameterized in terms of duty cycle). In our experience with
explicit management of scratchpads, we found it unnecessary and
over-complicated to embed transfers in hammocks.

5.3 Task-sets
To compose the task-sets, we use five tasks from the C-Lab real-
time benchmark suite [6], shown in Table 2. These benchmarks
are extensively used in real-time research, because they
explicitly avoid irregular programming constructs that complicate
worst-case execution time analysis. The benchmarks are

compiled to the Simplescalar ISA [4] with –O3 optimization
enabled.

The second column of Table 2 shows the total WCET of each
benchmark at a processor frequency of 1 GHz, derived by WCET
analysis, assuming no overlap. The next three columns break
down the components of WCET. C is the total computation time,
B is total bus transfer time, and M is the total memory time. The
sixth column shows the number of memory transfer instructions
in each benchmark (total transfers, fetch data block into and
flush data block from the D-scratchpad, and fetch instruction
block into the I-scratchpad). The final column gives the average
actual execution time of each benchmark with no other tasks
running, measured on the cycle-level simulator. We constructed
various task-sets with different memory utilizations by
combining tasks from Table 2. Each task-set in Table 3 is
composed of a single task per virtual processor (assuming a four
virtual processor system), and characterized by its memory-to-
computation ratio. Task-sets with comparatively high, moderate,
and low memory-to-computation ratios are referred to as HIGH,
MED, and LOW, respectively. Task periods are chosen to yield a
fully utilized system (U=1) at 1 GHz using our proposed adapted
WRR, i.e., ∑ =

i
id 1. This implies the task- sets are just-feasible

using our technique. Thus, if the task-set has a perceptible
memory component, it will not be feasible using conventional
EDF scheduling. This setup allows us to measure the over-
subscription of the EDF schedule, whether or not task-sets will
become feasible using EDF if frequency is increased, the amount
of static slack achieved by WRR over EDF, etc.

Table 3 lists the tasks in each task-set. The task’s name, period
(P), and individual utilization (Ui = WCETi/Pi) are indicated for
each task i (WCETs were provided in Table 2). The second-to-
last column gives the contribution of memory (DRAM + bus) to
worst-case utilization of each task-set (assuming no overlap),
revealing the memory-intensiveness of each task-set, ranging
from 0.331 for HIGH down to 0.0440 for LOW. The last column
gives the total worst-case utilization of each task-set using EDF
scheduling – none of the task-sets are provably schedulable
because their worst-case utilizations are greater than 1, failing
the EDF schedulability test.

We also constructed HIGH, MED, and LOW task-sets composed
of eight tasks each, two tasks per virtual processor. The details of
these task-sets are not shown here for space constraints, although
we discuss their results in the next section.

5.4 Cycle-Level Simulation Environment for
Run-Time Experiments
We implemented a detailed cycle-level simulator (custom-built
using Simplescalar toolset [4]) that models the microarchitecture
described in Section 5.1, as a run-time demonstration vehicle.
EDF and adapted WRR scheduling use the same
microarchitecture substrate.

A lightweight software EDF scheduler is used to schedule
multiple tasks on the same virtual processor. WRR among the
four virtual processors is implemented via four hardware
registers, as described in Section 5.1.

Table 2. C-lab benchmark description (processor frequency = 1 GHz).

WCET components
Task

WCET
(ms) C (ms) B (ms) M (ms)

memory transfer instr.
(total / D-scratch. / I-scratch.)

Avg. exec.
time (ms)

adpcm 3.35 3.29 0.0328 0.0256 512 / 490 / 22 2.45
cnt 0.170 0.120 0.0282 0.0221 441 / 425 / 16 0.160
mm 5.15 4.36 0.442 0.345 6908 / 6884 / 24 5.08
lms 0.159 0.154 0.00333 0.00260 53 / 37 / 16 0.155
srt 2.26 2.26 0.00256 0.00200 40 / 30 / 10 1.88

Table 3. Task-sets composed from C-lab benchmarks (Utilization of adapted WRR is 1, at 1GHz).

VP 1 VP 2 VP 3 VP 4
Task-set

Name P (ms) U Name P (ms) U Name P (ms) U Name P (ms) U
Umem

(EDF)

Utotal
(EDF)

HIGH cnt 0.620 0.274 cnt 0.620 0.274 Cnt 0.594 0.286 cnt 0.594 0.286 0.331 1.12
MED mm 18.9 0.272 mm 18.9 0.272 Mm 20.4 0.252 mm 20.4 0.252 0.162 1.05
LOW srt 11.4 0.198 lms 1.65 0.0963 cnt 1.98 0.0858 adpcm 5.32 0.629 0.0440 1.01

6. EXPERIMENTS
In this section, we present worst-case schedulability experiments
for baseline EDF (no overlap of tasks’ WCETs) and our adapted
WRR (overlap of tasks’ WCETs). We show results for a single
task per virtual processor and multiple tasks per virtual
processor. In addition, we study the effect of varying the number
of DRAM banks, including evaluating fewer banks than the
number of virtual processors to understand the impact of limited
DRAM parallelism.

Finally, for demonstration, we simulate the baseline EDF and our
adapted WRR on the cycle-level simulator for 100ms. In all
cases, the simulation results are in agreement with the
schedulability tests.

6.1 Schedulability Experiments
The graph in Figure 4 shows results of schedulability tests for a
four virtual processor system with four DRAM banks. Each task-
set has four tasks (thus, for WRR, there is a single task per VP).
The first bar (“EDF”) is the worst-case utilization under EDF
scheduling, i.e., the sum of individual task utilizations, which
must be less than 1 for schedulability. The next bar (“WRR”) is
the worst-case utilization using our proposed adapted WRR
(taking into account overlapping WCETs), i.e., the sum of all
tasks’ duty cycles, which must be less than 1 for schedulability.
Recall, we composed our task-sets to achieve a worst-case
utilization of 1 using adapted WRR at 1 GHz, and this is evident
from the graph.

We also show a third bar, labeled “perfect”, which represents an
ideal lower bound on worst-case utilization. To model ideal
overlap of computation and memory time, we set M=0 and B=0
(hiding all DRAM latency and bus transfer time) in the tasks’
WCETs and plotted worst-case utilization accordingly. Thus, the
difference between the “EDF” and “perfect” bars is the memory
component of worst-case utilization, including the bus transfer
time (same as Umem column of Table 3). The larger this gap, the
more potential reward for WRR scheduling. This gap increases,
going from least memory-intensive task-set (LOW) to most
memory-intensive task-set (HIGH).

0

0.2

0.4

0.6

0.8

1

1.2

1GHz 2GHz 1GHz 2GHz 1GHz 2GHz

TASK-SETS
4 tasks (1 task/VP for WRR)

w
o

rs
t-

ca
se

 u
ti

liz
at

io
n

EDF WRR perfect

LOW MED HIGH

Figure 4. Worst-case utilization.

Task-sets LOW, MED, and HIGH are infeasible at 1 GHz using
the conventional EDF (EDF worst-case utilization exceeds 1),
whereas WRR exploits overlapping WCETs in an analytically-
bounded way to produce a feasible schedule.

Even for feasible EDF scenarios at the higher frequency (2 GHz),
using WRR results in more static slack in the schedule than does
EDF, e.g., Figure 4 shows 50% slack for “WRR” vs. only 29%
for “EDF”, for HIGH at 2 GHz. Static slack can be used to
increase functionality via adding more tasks, reducing periods,
etc.

Notice that “WRR” approaches the “perfect” point, but does not
perfectly overlap computation and memory time because memory
transfer instructions initiate and complete in adjacent duty
cycles, wasting an aggregate of one whole duty cycle during
which the task could use the pipeline but does not. This is
evident from the example memory transfer in Figure 3 (Section
 3.2).

Figure 5 shows that our framework is scalable to systems where
the number of tasks is greater than the number of available
register contexts, by supporting multiple tasks per virtual
processor. Conventional software EDF is used to schedule

multiple tasks within a virtual processor. The same observations
discussed previously, for a single task per VP, still apply for this
more general case.

0

0.2

0.4

0.6

0.8

1

1.2

1GHz 2GHz 1GHz 2GHz 1GHz 2GHz

TASK-SETS
8 tasks (2 tasks/VP for WRR)

w
o

rs
t-

ca
se

 u
ti

liz
at

io
n

EDF WRR perfect

LOW MED HIGH

Figure 5. Worst-case utilization.

In Figure 6, we show the effect of varying the number of DRAM
banks (i.e., DRAM parallelism) on the schedulability of WRR.
“EDF” and “perfect” bars are the same as before, because they
are not affected by the number of DRAM banks (no conflicts).
“WRR-1”, “WRR-2”, and “WRR-4” bars present WRR
schedulability results for a four virtual processor system, with 1,
2, and 4 total DRAM banks, respectively. The trend is that
schedulability improves with more banks, as anticipated.
Somewhat surprisingly, note that “WRR-1”, which essentially
serializes all memory accesses like “EDF”, still performs better
than “EDF” for the 2 GHz processors. Only at 1 GHz and 1
DRAM bank is the single-threaded EDF approach slightly
preferred.

Although all memory accesses are essentially serialized in
“WRR-1” due to our very conservative assumptions regarding
bank and bus conflicts, they are still overlapped with pipeline
computation from other tasks, unlike “EDF”. Results are very
positive for HIGH at 2 GHz, a point that anticipates the memory
wall in future embedded systems – notice that schedulability is
universally very good for WRR with 1, 2, and 4 DRAM banks.

0

0.2

0.4

0.6

0.8

1

1.2

1GHz 2GHz 1GHz 2GHz 1GHz 2GHz

TASK-SETS
8 tasks (2 tasks/VP for WRR)

w
or

st
-c

as
e

u
til

iz
at

io
n

EDF WRR-1 WRR-2 WRR-4 perfect

HIGHMEDLOW

Figure 6. Varying the number of DRAM banks.

6.2 Simulation Demonstration
The graph in Figure 7 shows run-time utilization of the task-sets
assuming four DRAM banks, measured by cycle-level
simulation. Run-time utilization is naturally less than worst-case
utilization, because it depends on actual execution times instead
of worst-case execution times. All task-sets were successfully
scheduled using the adapted WRR at 1 GHz, with a run-time
utilization less than 1 (as predicted by schedulability analysis).
On the other hand, using EDF scheduling, task-sets HIGH and
MED miss their deadlines and terminate (explaining why the
“EDF” bar is unavailable). Task-set LOW was successfully
scheduled by EDF at 1 GHz due to the difference between
WCETs and actual execution times. However, for hard-real-time
system design, it is neither safe nor acceptable to use these actual
execution times as inputs to worst-case schedulability tests.

0

0.2

0.4

0.6

0.8

1

1.2

1GHz 2GHz 1GHz 2GHz 1GHz 2GHz

TASK-SETS
4 tasks (1 task/VP for WRR)

ru
n

-t
im

e
u

ti
liz

at
io

n

EDF WRR perfect EDF failed

LOW MED HIGH

Figure 7. Run-time utilization.

7. RELATED WORK
A large body of work exists in the area of uniprocessor
scheduling [16] [17] [21]. Liu and Layland [16] provide extensive
insight into various uniprocessor scheduling algorithms such as
earliest-deadline-first (EDF) and rate-monotone scheduling
(RMS). Weighted-round-robin [17] is a fairly simple scheduling
policy to implement, however, it perhaps receives less attention
in the field of hard-real-time scheduling because of the
prohibitively high context-switching overhead (WRR switches
much more frequently than EDF or RMS), an aspect that
improves with hardware multithreading support.

Hardware multithreading reduces the penalty of context-
switching significantly, which facilitates hiding lengthy stalls due
to memory accesses and even fine-grain events, such as L1 cache
misses, branch mispredictions, and other ILP limiters
 [1] [9] [20] [23] [24] [25]. However, most prior work focuses on
improving average performance and bounding performance has
not been a priority.

Kreuzinger et al. proposed a multithreaded processor for real-
time systems and evaluated real-time scheduling policies on their
substrate, e.g., fixed-priority preemptive, EDF, least-laxity first,
and guaranteed-percentage [15]. They compare scheduling
policies by progressively tightening periods and discarding
policies that fail first, i.e., they perform dynamic testing. They do

not analytically model overlap and hence do not provide a static
means for testing schedulability under all possible scenarios.

Software thread integration (STI) is a compiler technique that co-
mingles instructions from multiple threads in the same binary
 [8]. It has not been applied to overlapping computation and
memory of integrated threads. Although STI could be extended to
do so, statically overlapping memory transfers of one thread with
computation of another thread requires knowing the relative
positioning of computation and memory, whereas our approach
does not.

Jain et al. provide the first (and extensive) study of soft-real-time
scheduling on SMT processors, pointing out the unique
opportunities and challenges in this new setting [13]. They divide
the problem into two sub-problems, co-scheduling (which tasks
to run simultaneously) and resource sharing (how to share
resources among co-scheduled tasks). Key factors in achieving
schedulability include prioritization of high-utilization tasks and
exploitation of symbiosis. They only consider soft-real-time tasks
and consequently consider a task-set to be schedulable even if
some fraction (5%) of deadlines are missed. Schedulability is
evaluated on the basis of dynamic testing. In contrast, we
consider hard-real-time tasks and provide a static schedulability
test accordingly.

8. SUMMARY AND FUTURE WORK
Contemporary embedded processors are rapidly evolving in terms
of clock frequency, worsening the memory wall problem even in
the embedded systems domain. Moreover, classic real-time
scheduling theory for uniprocessors is outdated in its inability to
model irregular parallelism afforded by multithreaded
processors, missing the opportunity to overlap WCETs of tasks
and exceed conventional uniprocessor scheduling limits.

In this paper, we developed an analytical framework that safely
and tractably bounds overlap between computation of a pipeline-
resident task with memory transfers of otherwise-idle tasks. This
is a key departure from prior multithreading research, which
focuses on average performance instead of worst-case
performance, and is therefore incompatible with hard-real-time
systems. We then derived a closed-form schedulability test that
only depends on the aggregate breakdown of memory and
computation time in tasks’ WCETs, and not the specific ordering
of computation and memory transfers within and among tasks.
With this new formalism, we are able to safely and tractably
overlap WCETs in hard-real-time systems on multithreaded
processors. From schedulability experiments with real task-sets,
task-sets with perceptible memory time that are unschedulable
using conventional EDF become schedulable using our adapted
WRR, due to the ability to analytically overlap tasks’ WCETs.

For future work, we plan to extend our analytical framework to
include more flexible and fine-grain forms of multithreading,
such as simultaneous multithreading. Further, we are exploring
less conservative approaches for modeling worst-case bus and
bank conflicts in the memory system.

9. ACKNOWLEDGMENTS
We thank Aravindh Anantaraman for insightful discussions,
contributions to worst-case timing analysis, and comments on
drafts of this paper.

This research was supported in part by NSF grants CCR-
0207785, CCR-0208581, and CCR-0310860, NSF CAREER
grant CCR-0092832, and generous funding and equipment
donations from Intel and Ubicom.

10. REFERENCES

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A.
Porterfield, and B. Smith. The Tera Computer System. In
Proceedings of the International Conference on
Supercomputing, June 1990.

[2] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F.
Mueller. Virtual Simple Architecture (VISA): Exceeding the
Complexity Limit in Safe Real-Time Systems. In
Proceedings of the 30th International Symposium on
Computer Architecture, June 2003.

[3] ARM, Inc. ARM-11 Technical Reference Manual. Available
from: http://www.arm.com/pdfs/DDI0211D_arm1136_r0p2_trm.pdf.

[4] D. Burger, T. Austin, and S. Bennett. The Simplescalar
Tool Set, Version 2.0. Technical Report 1342, Computer
Science Department, University of Wisconsin-Madison,
1997.

[5] G. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Kluwer Academic Publishers, 1997.

[6] C-Lab WCET Benchmarks. Available from: http://www.c-
lab.de/home/en/download.html.

[7] B. Cogswell and Z. Segall. MACS: A Predictable
Architecture for Real Time Systems. In Proceedings of the
12th IEEE Real-Time Systems Symposium, December 1991.

[8] A. Dean and J. Shen. Techniques for Software Thread
Integration in Real-Time Embedded Systems. In
Proceedings of the 19th IEEE Real-Time Systems
Symposium, December 1998.

[9] R. Eickemeyer, R. Johnson, S. Kunkel, M. Squillante, and
S. Liu. Evaluation of Multithreaded Uniprocessors for
Commercial Application Environments. In Proceedings of
the 23rd International Symposium on Computer
Architecture, May 1996.

[10] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread
Level Parallelism of Desktop Applications. In Proceedings
of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems,
November 2000.

[11] T. Hand. Real-Time Systems Need Predictability. Computer
Design (RISC Supplement), August 1989.

[12] C. Healy, D. Whalley, and M. Harmon. Integrating the
Timing Analysis of Pipelining and Instruction Caching. In
Proceedings of the 16th Real-Time Systems Symposium,
December 1995.

[13] R. Jain, C. J. Hughes, and S. V. Adve. Soft Real-Time
Scheduling on Simultaneous Multithreaded Processors. In
Proceedings of the 23rd IEEE Real-Time Systems
Symposium, December 2002.

[14] D. Kirk. SMART (Strategic Memory Allocation for Real-
Time) Cache Design. In Proceedings of the 10th IEEE Real-
Time Systems Symposium, December 1989.

[15] J. Kreuzinger, A. Schulz, M. Pfeffer, and T. Ungerer. Real-
Time Scheduling on Multithreaded Processors. In
Proceedings of the 7th International Conference on Real-
Time Computer Systems and Applications, December 2000.

[16] C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real Time Environment.
Journal of ACM, vol. 20, pp. 46-61, January 1973.

[17] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[18] T. Lundqvist and P. Stenstrom. An Integrated Path and
Timing Analysis Method Based on Cycle-Level Symbolic
Execution. Journal of Real-Time Systems, 17(2/3):183-208,
November 1999.

[19] F. Mueller. Compiler Support for Software-Based Cache
Partitioning. In Proceedings of Programming Language
Design and Implementation, June 1995.

[20] B. Smith. Architecture and Applications of the HEP
Multiprocessor Computer System. In Proceedings of Real
Time Signal Processing IV, 1981.

[21] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo.
Deadline Scheduling for Real-Time Systems. Kluwer
Academic Publishers, 1998.

[22] S. Storino and J. Borkenhagen. A Multi-Threaded 64-bit
PowerPC Commercial RISC Processor Design. In
Proceedings of the International Symposium on High-
Performance Chips, August 1999.

[23] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R.
Stamm. Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor. In
Proceedings of the 23rd International Symposium on
Computer Architecture, May 1996.

[24] Ubicom, Inc. The Ubicom IP3023 Wireless Network
Processor. Available from:

 http://www.ubicom.com/products/ip3000/ip3000.html.

[25] T. Ungerer, B. Robic, and J. Silc. A Survey of Processors
with Explicit Multithreading. ACM Computing Surveys,
Vol. 35, No. 1, March 2003.

[26] A. Wolfe. Software-Based Cache Partitioning for Real-Time
Applications. In Proceedings of the 3rd International
Workshop on Responsive Computer Systems, September
1993.

